

1Jenn-Wei Lin is with Department of Computer Science &
Information Engineering, Fun Jen Catholic University,
Taipei, Taiwan.
Email: jwlin@csie.fju.edu.tw

2This research is supported by the National Science
Council, Taiwan, R.O.C., under Grant NSC 92-2213-E-
007-073.

Analysis of Optimal Software Release Time Based on a
Testing-Effort Dependent Reliability Model

基於測試心力相依可靠度模型之最佳軟體釋放時機分析

Chin-Yu Huang*2, Jung-Hua Lo**, Jenn-Wei Lin1, and Bo-Ting Lin*

*Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan
cyhuang@cs.nthu.edu.tw

**Department of Information Management
Lan Yang Institute of Technology

I-Land, Taiwan
losir@mail.fit.edu.tw

Abstract

Software reliability is one of the most important
aspects of software quality. Accurately modeling
software reliability, and predicting its possible
trends are essential to determining overall product’s
reliability. Until now, many software reliability
growth models (SRGMs) are proposed and they can
help us to estimate time or resource needed to reach
a reliability target. Actually, some important metrics
can also be easily determined through SRGMs. One
of the most important applications of SRGM is to
determine the software release time. In this paper,
we develop a useful method to compute the software
release time considering cost, reliability and testing
efficiency during the development phase. We first
review a SRGM with generalized logistic testing-
effort function and change-point. The proposed
model can be precisely to illustrate the effectiveness
of introducing new testing techniques. We then
address the problem of how to decide when to stop
testing and when to release software for use. In
addressing the optimal release time, we consider
cost and reliability factors. Moreover, we introduce
the concept of testing efficiency. Several theorems
and numerical illustrations are presented.

Keywords: Software Reliability, Software Testing,
Testing-Effort, Non-homogeneous Poisson Process
(NHPP), Software Cost.

摘 要

軟體可靠度是考量軟體品質的最重要的觀點

之一。 正確的去模塑軟體可靠度，以及預測它可

能的趨勢對於決定整個產品的可靠度是有其絕對

必要的。截至目前為止，已有許多的軟體可靠度

成長模型被提出且它們能幫助我們去評估為了要

達成某種程度的可靠度目標所需要消耗的時間或

資源。事實上，一些重要的度量也能經由軟體可

靠度成長模型而來輕易地被決定。軟體可靠度成

長模型的最重要幾個應用之一就是去決定軟體釋

放時機。在本篇論文裡，我們提出了在軟體開發

階段，一個用於計算軟體釋放時間的方法，而其

考量了成本、可靠度以及測試效率等。我們首先

回顧一個具有後勤測試心力函數與變動點之軟體

可靠度成長模型，所提出的模型能精確地說明在

軟體開發階段，倘引進新的測試技巧其所會造成

的效果。接著我們也說明了何時才能停止測試及

何時準備去釋放該軟體以供外界使用的問題。在

說明最佳軟體釋放時機的同時，我們也考慮了成

本及可靠度這兩個因素。此外，我們亦介紹了測

試效率的概念，幾個定理及數值例子也將會提出

且呈現出來。

關鍵詞：軟體可靠度、軟體測試、測試心力、
非齊次卜以松過程、軟體成本。

1. Introduction

With the steadily growing power and reliability
of hardware, software has been identified as a major
stumbling block in achieving desired levels of
system dependability. For example, US DOD
spending for software intensive systems is significant
and it continues to increase. Furthermore, software
costs as a percentage of total computer system costs
continue to increase; while associated hardware costs

are continuing to decrease. To illustrate this point, in
1962 the ratio of computer hardware costs to
software costs was 80:20. By 1985 the ratio had
reversed to 20:80. Actually, it is very important to
ensure the quality of the underlying software systems
in the sense that they perform their functions
correctly. Software reliability (SR) is defined as the
probability of failure-free software operation for a
specified period of time in a specified environment
[1]. During the past 20 years, a number of Software
Reliability Growth Models (SRGMs) were proposed
[2-4]. From the study in [4-7], we can find that
many authors considered an NHPP as a stochastic
process to describe the fault process. Most SRGMs
use calendar time as the unit of fault detection period.
Very few SRGMs use the human power, number of
test case runs, or CPU time as the unit [2]. Recently,
we [8-11] proposed a new SRGM that incorporates
the concept of logistic testing-effort function (TEF)
into an NHPP model to get a better description on
the software fault phenomenon.
 On the other hand, during the development
phase, software is subjected to several stages of
testing to identify existing problems. At the end of
each test stage, corrections and modifications are
made to the software with the hope of increasing its
reliability. Therefore, if we want to detect more
additional faults in a short time, it is advisable to
introduce new tools/techniques, which are
fundamentally different from the methods currently
in use. The benefit of these methods is that they can
design/propose several testing programs/automated
testing tools to test software for satisfying the client’s
technical requirements, schedule, and budget.
Therefore, in this paper, we first review a SRGM
with generalized logistic TEF & change-point. The
proposed model has a fairly accurate prediction
capability. In addition to modeling the software
fault-detection process, we will also address the
problem of how to decide when to stop testing and
release software. We discuss the optimal software
release time problem based on cost and reliability
considering TE and efficiency.

In the remaining of this paper, there are four
more sections. We give a brief review of the
SRGM with a generalized logistic TEF and
change-point in Section 2. Section 3 introduces the
concept of testing efficiency obtained by new
techniques and tools during testing. The optimal
software release time problem based on minimizing
cost subject to achieving a given level of reliability
considering the extra cost of introducing new
techniques/tools during testing is discussed in
Section 4. Finally, Section 5 concludes this paper.

2. Testing-effort function and change-

point problem

2.1. Review of SRGM with generalized logistic
testing-effort function

Assumptions [8-11]:
1). The fault removal process follows the Non-

homogeneous Poisson Process (NHPP).
2). The software system is subject to failures at

random times caused by the manifestation of
remaining faults in the system.

3). The mean number of faults detected in the time
interval (t, t+∆t] by the current TE expenditures
is proportional to the mean number of remaining
faults in the system.

4). The proportionality is a constant over time.
5). The consumption curve of testing effort is

modeled by a generalized logistic TEF.
6). Each time a failure occurs, the fault that caused

it is immediately and perfectly removed and no
new faults are introduced.

If we define the expected value number of faults,

N(t), whose mean value function is known as m(t),
then an SRGM based on NHPP can be formulated as
a Poisson process:

!

)](exp[)]([])([
n

tmtmntNP
n

r
−

== (1)

Furthermore, if the number of faults detected by the
current TE expenditures is proportional to the
number of remaining faults, then we obtain the
following differential equation [9]:

)]([
)(

1)(tmar
twdt

tdm
−×=× (2)

where m(t) is the expected mean number of faults
detected in time (0, t] (m(0)=0), w(t) is current TE
consumption at time t, a is the expected number of
initial faults, and r is error detection rate per unit TE
at testing time t that satisfies r>0.
Solving the above differential equation, we have
)1()())0()((WtWreatm −−−×=

)1()(* trWea −−×= (3)
Eq. (3) is an NHPP model with mean value function
considering the TE consumption. The consumed
TE indicates how effective the faults are detected in
the software and can be modeled by different
distributions [12-15].
 From the previous studies in [7-10], we know
that the logistic TEF (i.e. the Parr model [16]) is
based on a description of the actual software
development process and can be used to describe the
work profile of software development. If we relax
some assumptions and take into account the
structured development effort, we get a generalized

logistic TEF [11]:

κ

ακ

βκ
/1

1
/)1()(









+

+×=
− tAe

NtW (4)

where κ is the structuring index and  β is a constant.
When κ =1, the above equation becomes

 ()
βα

2
1

×
+

= − tAe
NtW (5)

If β is viewed as a normalized constant and we have
β=2, the above equation is equal to Eq. (4).
Similarly, if κ =2, we have

 ()
βα

3
1 2 tAe

NtW
−+

= (6)

If β=κ+1, we get a more generalized solution:

 ()
κ κα tAe

NtW
−+

=
1

 (7)

Furthermore, the testing effort w(t) reaches its
maximum value at time

κα
κ
A

t
ln

max = (8)

2.2. SRGM with generalized logistic TEF &

change-point

In general, among various SRGMs two most
important parameters affect reliability: the number of
initial faults and the fault detection rate. The
number of initial faults is the number of faults in the
software at the beginning of test. This number is
usually a representative measure of SR. Knowing the
number of residual faults can help us to determine
whether the software is suitable for customers to use
or not and how much more testing resources are
required. It can also provide an estimate of the
number of failures that customers will encounter
when they use this software in practice [10].
 The FDR, on the other hand is used to measure
the effectiveness of fault detection by test techniques
and test cases. In the vast literature, most researchers
assume a constant detection rate per fault in deriving
their SRGMs. That is, they assume that all faults
have equal probability of being detected during the
software testing process and the rate remains
constant over the intervals between fault occurrences.
In fact, the FDR strongly depends on the skill of test
teams, program size, and software testability.
Typically, whether the software faults can be
detected or not depends on the abilities of
programmers/debuggers, the software structure, the
maturity of software development procedure, and the
correlation among program modules.
 At the beginning of the testing phase, many

faults can be discovered by inspection and the FDR
depends on the fault discovery efficiency, the fault
density, the TE, and the inspection rate. On the other
hand, in the middle stage of testing phase, the FDR
normally depends on other parameters such as the
execution rate of CPU instruction, the failure-to-fault
relationship, the code expansion factor, and the
scheduled CPU hours per calendar day [9, 11].
Practically, during the SDP, we can detect/remove
more additional faults through some new techniques.
Therefore, the FDR may be not a constant or smooth,
i.e., it may be changed at some time moment τ called
change-point [17-21]. Actually, we can incorporate
both generalized logistic TEF and change-point into
software reliability growth modeling. Therefore,
for the assumption 4 in Section 2, it may be modified
as: the proportionality is not just a constant or in
some case may be changed at some time moment τ
called change-point.

Therefore, we can describe an SRGM based on
TEF and change-point as follow:

)]([)(
)(

1)(
1

1 tmatr
twdt

tdm
−×=× (9)

and




>
≤≤

= τ
τ

tr
tr

tr ,
0,

)(
2

 (10)

where a>0, m1(t) is the expected mean number of
faults detected in time (0, t] and m1(0)=0.

Note that Eq. (9) have two components which
influence the number of faults detected (NFD): the
TE function w(t), and the FDRs r(t). Since the
s-expected current detected fault content is finite at
any time, m0(t) is an increasing function of ; m0(0)=0.
Solving above two equations, we have

)1()1()()(*))0()((
1

trWWtWr eaeatm −−− −×=−×= ,
when τ≤≤ t0 . (11)

)1()())}()(()(*{ 2
1

ττ WtWrrWeatm −+−−×= ,
when τ>t . (12)

3. New techniques for increasing software
testing efficiency

It is well known that when the software coding
is completed, the testing phase comes next and it is a
necessary but expensive process. Once all the
detectable faults are removed from a new computer
software package, the computer company will need
to determine when to stop testing and make a
software risk evaluation. If the results meet their
requirement specifications and the related criteria are
also satisfied, the company will adorn and announce
that this software product is ready for releasing.
Therefore, adequately adjusting some specific

parameters of a SRGM and adopting the
corresponding actions in the proper time interval can
greatly help us to speedup getting the desired
solution. For example, we have discussed the
applications of TE control and management problem
in our previous studies [8-11]. Alternative to
controlling the TE expenditures, we believe that new
testing schemes will help achieve a given operational
quality at a specified time. That is, through some
new techniques, we can detect more additional faults,
although these new methods will increase the extra
cost [11].
 On the other hand, the change-point problems
have been studied by many authors. Zhao [17]
think that the change-point can be occurred when the
testing strategy and testing-resource allocation are
changed. Besides, the increasing knowledge of the
program, the testing facilities and other random
factors can be the causes of the change-points.
Here we will to modify the concept of change-point
in software reliability modeling and use it to describe
the behavior or characteristics of introducing
automated testing techniques/tools during the SDP.
Here we will use Ohba’s real data set as illustration
[22]. Let us consider the following scenario:
1) Due to economic considerations, software testing

and debugging will eventually be terminated at a
specified time point, T2 (here we assume T2=30).

2) Based on the software reliability growth model
selected by software developers or test teams,
the expected number of initial faults, a, in this
software system is estimated at time T1 and 0<T1
<T2 (here we assume T1=19).

3) By applying the estimated parameters into the
SRGM, the test teams can predict the cumulative
number of faults at time T2. The estimated
value may have already satisfied the developers'
desired goal. If not, in order to meet the
requirements, the developers must detect more
extra faults during the time interval T2−T1.

In our past studies [11], we ever introduced a

gain parameter to describe the behavior or
characteristics of new testing techniques/tools and
incorporate it into the mean value function. That is,
the modified mean value function is depicted in the
following:

)1()1()()(*))0()((trWWtWr eaeatme
σσ −−− −=−= (13)

where τ>t and σ is the gain parameter (GP).
Therefore, from Eq. (12) & (13), we have

))0()((

))()()0(()(22

WtWr

rWWrrWtWr

−

−+−
=

ττσ

On the other hand, from Eq. (3), (11), and (12), we
can also re-define the gain-effect of employing new
automated techniques/tools and depicted it as follow:

)1(
)1(

)1(
)(*

))}()(()(*{ 2

P
ea

ea
trW

WtWrrW
+=

−

−
−

−+− ττ
, where τ>t .

Hence, we can conclude that

)1()())}()(()(*{ 2
1

ττ WtWrrWeatm −+−−=
)1())0()((WtWrea −−−= σ

)1()1())0()((WtWreaP −−−×+=
)()1(tmP ×+= (14)

where P is the additional fraction of faults detected
by using new automated tools or techniques during
testing, and τ <t<TLC (TLC is software life-cycle length
and generally →∞).
 We can treat Eq. (14) as the modified MVF of
adopting new techniques into SDP and it is effective
when t>τ. Rather, we can use (1+P)m(t) to represent
the MVF when new techniques/methods are
introduced. Altogether, introducing new automated
tools/methods may help us in detecting & removing
more additional faults which are hard to detect
without these new methods. But the most important
thing is how to provide enough information about
these approaches to the test team. Before adopting
these automated techniques/tools, we should get the
quantitative information from the industrial data
relative to the methods' past performance applied in
other instances, or qualitative information from the
subjective valuation of methods' attributes. Certainly,
the methods' past performance in aiding the
reliability growth should be considered in
determining whether they will be successful again or
not [11].

4. Optimal software release policy

Optimization models for software release time
are many and varied. A majority of models view
the software system as a whole and study the growth
of reliability as testing time increases. One of the
most important applications of SRGM is to
determine the software release time. When the
software testing is completed, software product is
ready to release to users. The software release time
problem is posed as an unconstrained optimization
problem where the cost associated with testing is
minimized or a constrained optimization problem
where constraints on minimum reliability
requirements are imposed. However, proper timing
is very important. If the reliability of the software
does not meet the manager’s goal, the developers or
testers may introduce external help to aid in testing
[23-25]. In this section, based on the proposed
SRGM, useful rules are developed for determining
optimal software release time subject to various
constraints.

4.1 Software release time based on cost

criterion

Okumoto and Goel [4, 23] firstly discussed the
software optimal release policy from the cost-benefit
viewpoint. Using the total software cost evaluated
by cost criterion, the cost of TE expenditures during
software development phase and the cost of
correcting errors before and after release is:

∫+−+=
T

LC dxxwCTmTmCTmCTC
0321)()]()([)()(1

 (15)
where C1 is the cost of correcting an error during
testing, C2 is the cost of correcting an error during
operation, and C3 is the cost of testing per unit TE
expenditures [4, 9, 11, 24, 26].
 Generally, in order to detect additional faults
during testing, the test teams/debuggers may use new
automated tools or techniques if they are available.
Hence the cost trade-off of tools should be
considered in software cost model. But they
thereby save some of the greater expense of
correcting errors during operation. By summing up
above stated cost factors, the modified software cost
model can be shown as follow:

)([)()1()()(2 210 LCTmCTmPCTCTC ×+×+×+=

∫×+×+−
T

dxxwCTmP
03)()]()1((16)

where C0(T) is the cost function of including
automated tools/techniques to detect an additional
fraction P of faults during testing.
 In fact, C0(T) may not be a constant during the
testing phase of software development process.
Moreover, in order to determine the testing cost
C0(T) , the most general cost estimating technique is
to use the parametric methods if there are some
meaningful data available. Under the cost-benefit
considerations, the automated tools or techniques
will pay for themselves. By differentiating Eq. (16)
with respect to T and let C1 (1+P)= C1

* and C2
(1+P)= C2

*, we have

×−+= **
210)()()(2 CTm

dT
dCTC

dT
dTC

dT
d

)()(3 TwCTm
dT
d

×+ (17)

)(
*

10)()(* TrWeTarwCTC
dT
d −+=

)()(3
)(

*

2
* TwCeTarwC TrW ×+− −

4.1.1. C0(T)=C0, τ≥T ; C0(T)=0, T<τ, whereτ is
the start time of adopting new techniques/methods.

))0()(((*
1

*
2)([)()(2 WTWreCCarTwTC

dT
d −−−×−×=

]3C+ (18)

Since w(t)>0 for ∞<< T0 ,)(2 TC
dT
d =0 if

3
))0()((*

1
*

2)(CeCCar WTWr =−× −− (19)
The left-side in Eq. (19) is monotonically decreasing
function of T.
If 3

))0()((*
1

*
2)(CeCCar WWr ≤−× −− τ , then

3
))0()((*

1
*

2)(CeCCar WTWr LC <−× −− for τ<T<TLC.
Therefore, the optimal software release time T*=τ

since)(2 TC
dT
d >0 for τ<T<TLC. On the other

hand, if ×−×)(*
1

*
2 CCar 3

))0()((Ce WWr >−− τ and

3
))0()((*

1
*

2)(CeCCar WTWr LC <−× −− , there exists a
finite and unique solution T0 satisfying Eq. (19).

)ln(1
0 κκ

κ

α Θ−
Θ

×=
N

AT minimizes C2(T) (20)

where
κ A

N
C

CCar
r +

+
−

=Θ
1

])(ln[1
3

12
**

since)(2 TC
dT
d <0 for τ <T<T0 and)(2 TC

dT
d >0

for T0<T<TLC .
If 3

))0()((*
1

*
2)(CeCCar WTWr LC ≥−× −− , then

3
))0()((*

1
*

2)(CeCCar WTWr >−× −− for τ <T<TLC.
Therefore, the optimal software release time T*=TLC

since)(2 TC
dT
d <0 for τ <T<TLC.

4.1.2. ∫+=

T
dttwCCT

τ
)()(C 0010 , τ≥T ; C0(T)=0,

T<τ, where C01 is the nonnegative real number that
indicates the basic cost of adopting new techniques.

)(
*

*
10)()()(2 TrWeTarwCTwCTC

dT
d −+= ×− *

2C

)()(3
)(

*
TwCeTarw TrW ×+−

+−××= −−))0()(((*
2

*
1)([)(WTWreCCarTw

]03 CC + (21)

Since w(t)>0 for ∞<≤ T0 , 0)(2 =TC
dT
d if

03
))0()((*

1
*

2)(CCeCCar WTWr +=−× −− (22)
Because the left-side in Eq. (22) is monotonically
decreasing function of T, if

)()(03
))0()((*

1
*

2 CCeCCar WWr +>−× −− τ and

)()(03
))0()((*

1
*

2 CCeCCar WTWr LC +<−× −− , there
exists a finite and unique solution T0 satisfying Eq.
(22).

)ln(1
0 κκ

κ

α Θ−
Θ

×=
N

AT minimizes C2(T) (23)

where
κ A

N
CC
CCar

r +
+

−
=Θ

+ 1
])(ln[1

03

*
1

*
2 .

4.1.3. mT

dttwCCT))(()(C 0010 ∫×+=
τ

, τ≥T ; C0(T)=

0, T<τ.

×+×= −∫)())(()()(2 *
1

1
0 TarwCdttwTmwCTC

dT
d mT

τ

)()(3
)(

*
*

2
)(

*
TwCeTarwCe TrWTrW

+
−− −

×++−××= − mCCeCCartw trW
03

)(
*

*
2

*
1)([)(

]))((1−∫ mT
dttw

τ

because w(t)>0 for ∞<≤ T0 , 0)(2 =TC
dT
d if

]))(()([)(1
0

)(
*

*
1

*
2

−− ∫−−≡ mtrW T
dttwmCeCCarTP

τ

 3C= (24)
The left-side in Eq. (24) is monotonically decreasing
function of T. Therefore, if
 3

))0()((*
1

*
2)(CeCCar WWr >−× −− τ and P(TLC)<C3,

it means that there exists a finite and unique solution
T0 satisfying Eq. (24) which can be solved by
numerical methods [26]. It is noted that

)(2 TC
dT
d <0 for 00 TT <≤≤ τ and)(2 TC

dT
d

>0 for T>T0. Thus, T=T0 minimizes C2(T) for T0
<TLC.

4.2 Numerical examples.

Here we illustrate how to minimize the software
cost in which the new automated tools/techniques are
introduced during testing. For the estimated
parameters of our proposed model, we have
N=48.7768, A=429.673, α=0.158042, κ=2.63326,
a=369.029, r=0.0509553. Besides, C01=$1000,
C1=$10 per error, C2=$50 per error, C0=$10,
C3=$100 per unit TE expenditures, τ=19, and
TLC=100 weeks [11]. The numerical example on
the relationship between the cost optimal release time
and P is given in Table 1. From Table 1, we find
that the bigger the P, the larger are the optimal
release time and the smaller the total expected
software cost. The reason is that if we have better
testing performance, we can detect more latent or
undetected faults through additional techniques/tools.
Therefore, we can really shorten the testing time and
release this software earlier. Similarly, the
relationship between the optimal release time and P

based on the other cost function is shown in Table. 2.

Table 1: Relationship between T0*, C(T0*),

and P based on the cost function

∫×+=
100

190)(101000)(C dttwT

P Cost Optimal
Release Time T0*

Total Expected
Cost C(T0*)

0.01 19.7381 5574.05
0.02 20.0016 5414.5
0.03 20.2887 5254.74
0.04 20.6072 5094.77
0.05 20.965 4934.6
0.06 21.9747 4774.24
0.07 21.8541 4613.69
0.08 22.4464 4452.94
0.09 23.2027 4292.02
0.10 24.2839 4130.91

Table 2: Relationship between T0*, C(T0*),

and P based on the cost function
2.1100

190))((101000)(C ∫×+= dttwT

P Cost Optimal
Release Time T0*

Total Expected
Cost C(T0*)

0.01 19.6006 5573.46
0.02 19.7501 5414.07
0.03 19.9157 5254.54
0.04 20.0983 5094.88
0.05 20.2998 4935.07
0.06 20.5221 4775.13
0.07 20.7684 4615.04
0.08 20.0436 4454.81
0.09 21.3539 4294.43
0.10 21.7086 4133.91

4.3 Software release time based on reliability

Criterion

 In general, the software release time problem
is also associated with the reliability of software
system. If we know that the SR has reached an
acceptable reliability level, then we can determine
the right time to release this software. Here we define
the measure of SR for the proposed model, i.e., the
ratio of the cumulative number of detected faults at
the time T to the expected number of initial faults.









>
+

=

≤≤
=

τ

τ

t
a

Tmp
a

tm

t
a
Tm

TR
,)()1()(

0,)(

)(
1

 (25)

We can solve this equation and obtain a unique T1
satisfying R(T1)=R0. It is noted that R(T) is increasing
in T. Using the above equation, we can easily get

the required testing time needed to reach the
reliability objective R0 or decide whether the
reliability objective R0 is reached or not at a specified
time interval [25-26]. If R(τ)<R0 , there exists a
unique T1>τ satisfying R(T1)=R0. Therefore, by
solving Eq. (25), we can determine the testing time
needed to reach a desired reliability. Tables 3 and 4
show the relationship between the cost optimal
release time T0*, and P based on two different cost
functions and the corresponding SR R(T). From
Tables 3 and 4, we find that as P increases, the
optimal release time T1* increases.

Table 3: Relationship between the T0*, R(T),

and P based on the cost function

∫×+=
100

190)(101000)(C dttwT

P Cost Optimal
Release Time T0* R(T)

0.01 19.7381 0.890825
0.02 20.0016 0.900818
0.03 20.2887 0.910616
0.04 20.6072 0.920616
0.05 20.965 0.930616
0.06 21.9747 0.941974
0.07 21.8541 0.0950601
0.08 22.4464 0.096064
0.09 23.2027 0.970618
0.10 24.2839 0.980617

Table 4: Relationship between T0*, R(T), and

P based on cost function
2.1100

190))((101000)(C ∫×+= dttwT

P Cost Optimal
Release Time T0* R(T)

0.01 19.6006 0.889954
0.02 19.7501 0.89949
0.03 19.9157 0.909071
0.04 20.0983 0.91869
0.05 20.2998 0.928341
0.06 20.5221 0.938019
0.07 20.7684 0.94772
0.08 20.0436 0.953784
0.09 21.3539 0.967182
0.10 21.7086 0.976937

4.4 Software release time based on cost-

reliability criterion considering efficiency

From Section 4.3, we can easily get the required
testing time needed to reach the reliability objective
R0. Here our goal is to minimize the total software
cost to achieve the desired SR and then the optimal

software release time is obtained. Therefore, the
optimal release policy problem can be formulated as
minimize C(T) and subject to R(T) ≥ R0 where
0<R0<1.

T* = optimal software release time = max(T0 ,T1)
where T0= finite and unique solution T satisfying Eq.
(20), Eq. (23), or Eq. (24), and T1= finite and unique
T satisfying Eq. (25).

Combining the cost and reliability requirements
and considering the efficiency, we have the following
theorems.

Theorem 1:
Assume C0(T)= C0 (constant), C0>0, C1>0, C2>0,
C3>0, and C2>C1, we have
(1) if 3

))0()((*
1

*
2)(CeCCar WWr >−× −− τ and

3
))0()((*

1
*

2)(CeCCar WTWr LC <−× −− ,
T*=max (T0, T1) for R(τ)<R0<1 or T*=T0 for
0<R0 ≤ R(τ).

(2) if 3
))0()((*

1
*

2)(CeCCar WWr <−× −− τ , T* =T1
for R(τ)<R0<1 or T*=τ for 0<R0 ≤ R(τ).

(3) if 3
))0()((*

1
*

2)(CeCCar WTWr LC >−× −− , T* ≥ T1
for R(τ)<R0<1 or T* ≥ τ for 0<R0 ≤ R(τ).

Theorem 2:
Assume ∫+=

T
dttwCCT

τ
)()(C 0010 , C01, C0>0, C1>0,

C2>0, C3>0, and C2>C1, we have
(1) if)()(03

))0()((*
1

*
2 CCeCCar WWr +>−× −− τ and

))0()((*
1

*
2)(WTWr LCeCCar −−−×)(03 CC +< ,

T* =max(T0, T1) for R(τ)<R0<1 or T*=T0 for
0<R0 ≤ R(τ).

(2) if)()(03
))0()((*

1
*

2 CCeCCar WWr +<−× −− τ ,
T* =T1 for R(τ)<R0<1 or T*=τ for 0<R0 ≤ R(τ).

(3) if)()(03
))0()((*

1
*

2 CCeCCar WTWr LC +>−× −− ,

T* ≥ T1 for R(τ)<R0<1 or T* ≥ τ for 0<R0 ≤ R(τ).

Theorem 3:
Assume mT

dttwCCT))()(C (0010 ∫×+=
τ

, C01 , C0>0,

C1>0, C2>0, C3>0, and C2>C1 , we have
(1) if 3

))0()((*
1

*
2)(CeCCar WWr >−× −− τ and

P(TLC)<C3, T* =max(T0, T1) for R(τ)<R0<1 or
T*=T0 for 0<R0 ≤ R(τ).

(2) if 3
))0()((*

1
*

2)(CeCCar WWr <−× −− τ ,
T* =T1 for R(τ)<R0<1 or T*=τ for 0<R0 ≤ R(τ).

(3) if P(TLC)>C3 , T* ≥ T1 for R(τ)<R0<1 or T* ≥ τ
for 0<R0 ≤ R(τ).

From the above theorems, we can easily
determine the optimal software release time based on
the cost and reliability requirements considering
efficiency.

5. Conclusions

In this paper we present an SRGM with
generalized logistic TEF & change-point. It is a
more realistic model and very suitable for describing
the software fault detection/removal process.
Furthermore, we also discussed the effects of
introducing new tools/techniques for increased
efficiency of software testing, and studied the related
optimal software release time problem from the
cost-reliability viewpoint. The procedure for
determining the optimal release time has been
developed and the optimal release time has been
shown to be finite. In practice, sometimes it is
difficult for us to locate the faults that have caused
the failure based on the test data reported in the test
log and test anomaly documents. Therefore, it is
advisable to introduce new tools/techniques, which
are fundamentally different from the methods in use.

References

[1] American Institute of Aeronautics and Astronautics,
Recommended Practice for Software Reliability
ANSI/AIAA R-013-1992, February 23, 1993.

[2] J. D. Musa, A. Iannino, and K. Okumoto (1987).
Software Reliability, Measurement, Prediction and
Application. McGraw Hill.

[3] M. R. Lyu (1996). Handbook of Software Reliability
Engineering. McGraw Hill.

[4] Xie M (1991). Software Reliability Modeling. World
Scientific Publishing Company.

[5] H. Pham (2000), Software Reliability, Springer-
Verlag.

[6] Y. K. Malaiya and P. K. Srimani (1990), Software
Reliability Models: Theoretical Developments,
Evaluation and Applications, IEEE Computer Society
Press.

[7] P. Rook (1990). Software Reliability Handbook.
Elsevier Applied Science.

[8] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A Unified
Scheme of Some Non- Homogenous Poisson Process
Models for Software Reliability Estimation,” IEEE
Trans. on Software Engineering, Vol. 29, No. 3, pp.
261-269, March 2003.

[9] C. Y. Huang and S. Y. Kuo, “Analysis and
Assessment of Incorporating Logistic Testing Effort
Function into Software Reliability Modeling,” IEEE
Trans. on Reliability, Vol. 51, No. 3, pp. 261-270,
Sept. 2002.

[10] S. Y. Kuo, C. Y. Huang, and M. R. Lyu, “Framework
for Modeling Software Reliability, Using Various
Testing-Efforts and Fault-Detection Rates,” IEEE

Trans. on Reliability, Vol. 50, No. 3, pp. 310-320,
Sept. 2001.

[11] C. Y. Huang, S. Y. Kuo, and M. R. Lyu, “Optimal
Software Release Policy Based on Cost, Reliability
and Testing Efficiency,” Proceedings of the 23rd
IEEE Annual International Computer Software and
Applications Conference (COMPSAC'99), pp.
468-473, Oct. 1999, Phoenix, Arizona.

[12] S. Yamada, H. Ohtera, and H. Narihisa, “Software
Reliability Growth Models with Testing Effort,”
IEEE Trans. on Reliability, vol. R-35, No. 1, pp.
19-23, April 1986.

[13] S. Yamada, J. Hishitani, and S. Osaki, “Software
Reliability Growth Model with Weibull Testing
Effort: A Model and Application,” IEEE Trans. on
Reliability, Vol. R-42, pp. 100-105, 1993.

[14] S. Yamada, and H. Ohtera, “Software Reliability
Growth Models for Testing Effort Control,”
European Journal of Operational Research, pp.
343-349, 1990.

[15] S. Yamada, H. Ohtera, and H. Narihisa, “A
Testing-Effort Dependent Software Reliability Model
and Its application,” Microelectronics and Reliability,
Vol. 27, No. 3, pp. 507-522, 1987.

[16] F. N. Parr, “An Alternative to the Rayleigh Curve for
Software Development Effort,” IEEE Trans. on
Software Engineering, SE-6, pp. 291-296, 1980.

[17] M. Zhao, “Change-Point Problems in Software and
Hardware Reliability,” Communications in Statistics-
Theory and Methods, Vol. 22(3), pp. 757-768, 1993.

[18] H. J. Shyur, “A Stochastic Software Reliability
Model with Imperfect-Debugging and Change-
Point,” Journal of Systems and Software, Vol. 66, pp.
135-141, 2003.

[19] K. M. Jeong, “An Adaptive Failure Rate Change-
Point Model for Software Reliability,” International
Journal of Reliability and Applications, Vol.2, No.3,
pp. 99-207, 2001.

[20] Y. P. Chang, “Estimation of Parameters for Non-
homogeneous Poisson Process Software Reliability
with Chang-Point Model,” Communications in
Statistics: Simulation and Computation, Vol. 30, pp.
623-635, 2001.

[21] F. Z. Zou, “A Change-Point Perspective on the
Software Failure Process,” Software Testing,
Verification and Reliability, Vol. 13, pp.85-93, 2003.

[22] M. Ohba, “Software Reliability Analysis Models,”
IBM J. Res. Develop., Vol. 28, pp. 428-443, 1984.

[23] K. Okumoto and A. L. Goel, “Optimum Release
Time for Software Systems Based on Reliability and
Cost Criteria,” Journal of Systems and Software, Vol.
1, pp. 315-318, 1980.

[24] R. H. Huo, S. Y. Kuo, and Y. P. Chang, “Optimal
Release Policy for Hyper-Geometric Distribution
Software Reliability Growth Model,” IEEE Trans. on
Reliability, Vol. 45, No. 4, pp. 646-651, 1996.

[25] S. Zheng, “Dynamic Release Policies for Software
Systems with a Reliability Constraint,” IIE
Transactions, Vol. 34 (3), pp. 253-262, March 2002.

[26] B. Boehm (1981). Software Engineering Economics.
Prentice-Hall.

