
Exploiting Application Parallelism for Processor-in-Memory
Architecture

Slo-Li Chu
Department of Information and Computer

Engineering
Chung Yuan Christian University

Chung-Li, TAIWAN
slchu@cycu.edu.tw

Tsung-Chuan Huang
Department of Electrical Engineering

 National Sun Yat-sen University

Kaohsiung, TAIWAN
tch@mail.nsysu.edu.tw w

Abstract

Continuous improvements in semiconductor fab-
rication density are supporting new classes of
System-on-a-Chip (SoC) architectures that com-
bine extensive processing logic/processor with
high-density memory. Such architectures are gen-
erally called Processor-in-Memory or Intelligent
Memory and can support high-performance com-
puting by reducing the performance gap between
the processor and the memory. This architecture
comb ines various processors in a single system.
These processors are characterized by their com-
putation and memory -access capabilities. There-
fore, a novel strategy must be developed to iden-
tify their capabilities and dispatch the most appro-
priate jobs to them in order to exploit them fully.
Accordingly, this study presents an automatic
source-to-source parallelizing system, called
SAGE, to exploit the advantages of Proces-
sor-in-Memory architectures. Unlike conventional
iteration-based parallelizing systems, SAGE
adopts statement-based analyzing approaches. This
study addresses the one-host and one-memory
processor configuration. The strategy of the SAGE
system, in which the original program is decom-
posed into blocks and a feasible execution sched-
ule is produced for the host and memory proces-
sors, is investigated as well. The experimental re-
sults for real benchmarks are also discussed.

Keywords: Processor-in-Memory, statement
analysis, SAGE, SoC.

1. Introduction

In current high-performance computer architec-
tures, the processors run many times faster than
the computer's main memory. This performance
gap is often referred to as the Memory Wall [25].
This gap can be reduced using the Sys-
tem-on-a-Chip strategy, which integrates the proc-

essor(s) and memory on a single chip. The rapid
growth in silicon fabrication density has made this
strategy accomplished. The Semiconductor Indus-
try Association’s Technology Roadmap predicts
that a single high-end microprocessor die will
contain approximately 84 million logic transistors
by 2009. The density of dynamic random access
memory (DRAM) is increasing even more rapidly.
By 2009, a state-of-the-art DRAM chip is ex-
pected to have a capacity of 2Gbytes. Larger scale
problems will be easily handled “on-chip” using
these tremendous increases in memory and logic
density [19]. Accordingly, many researchers have
addressed integrating computing logic and high
density DRAM on a single die [7, 13, 17, 21, 22]
as so-called them Processor-in-Memory (PIM) or
Intelligent RAM (IRAM).

Integrating DRAM and computing logic on a
single integrated circuit (IC) die generates PIM
architecture with several desirable characteristics.
First, the physical size and weight of the overall
design can be reduced. As more functions are in-
tegrated on each chip, fewer chips are required for
a complete design. Second, very wide on-chip
buses between the CPU and memory can be used,
since DRAM is located with computing logic on a
single die. Third, eliminating off-chip drivers re-
duces the power consumption and latency [19].

The design philosophy of PIM chips is to re-
place the main memory chips in a computer sys-
tem rather than to rebuild an entirely new system.
Accordingly, PIM chips may act as co-processors
when the main processor spawns them. This ap-
proach is employed by Active Page [21], DIVA [7]
and FlexRAM [11, 13, 14], among others.

This class of architectures constitutes a hierar-
chical hybrid multiprocessor environment by the
host (main) processor and the memory processors.
The host processor is more powerful but have a
deep cache hierarchy and higher latency when

accessing memory. In contrast, memory processors
are normally less powerful but have a lower la-
tency in memory access. The main problems ad-
dressed here concern the method for dispatching
suitable tasks to these different processors accord-
ing to their characteristics to reduce execution
times, and the method for partitioning the original
program to execute simultaneously on these het-
erogeneous processor combinations.

Previous studies of programming for PIM archi-
tectures [7, 11, 13, 17, 22] have concentrated on
spawning as many processors as possible to in-
crease speedup, rather than the capability diffe r-
ence between the host and memory processors.
However, such an approach does not exp loit the
real advantages of PIM architectures. This study
refines our earlier SAGE (State-
ment-Analysis -Grouping-Evaluation) system [4, 9,
10] that integrates statement splitting, weight
evaluation and scheduling mechanism. The orig i-
nal scheduling mechanism is improved to generate
a superior execution schedule with a reduced time
complexity, using our new seesaw dispatching
mechanism. A weight evaluation mechanism is
established to obtain more precise expected execu-
tion time, called weight. The SAGE system can
automatically analyze the source program, gener-
ate a Weight Partition Dependence Graph (WPG),
determine the weight of each block, and then dis-
patch the most suitable blocks for execution on the
host and memory processors .

The rest of this paper is organized as follows:
Section 2 introduces the architectures of PIM. Sec-
tion 3 reviews other related work. Section 4 de-
scribes our SAGE system and the algorithms. Sec-
tion 5 illustrates an example. Section 6 presents
experimental results. Conclusions are finally
drawn in Section 7.

2. Processor-in-Memory Architecture

2.1 Architecture Description

Figure 1 depicts the organization of the PIM ar-
chitecture evaluated in this study. It contains an
off-the-shelf processor— P.Host, and a PIM chip.
The PIM chip integrates one memory processor—
P.Mem with 64 Mbytes of DRAM. This architec-
ture is derived from FlexRAM [11, 13, 14]. The
tiny memory processors (P.Array) in the original
FlexRAM are omitted to reduce the complexity of
analysis . The techniques presented in this paper
involve one P.Host and one P.Mem configuration,
and can be extended to support multiple P.Mems .

Table 1 lists the main architectural parameters of
the PIM architecture. P.Host is a six-issue super-
scalar processor that allows out-of-order execution
and runs at 800MHz, while P.Mem is a two -issue
superscalar processor with in-order capability and
runs at 400MHz. P.Mem has lower memory access
latency than the P.Host since the former is inte-
grated with DRAM. Thus, computation-bound
codes are more suitable for running on the P.Host,
while memory -bound codes are preferably running
on the P.Mem to increase efficiency.

The PIM chip is designed to replace regular
DRAMs in current computer systems, and must
therefore meet a memory standard that involves
additional power and ground signals to support
on-chip processing. One such standard is Rambus
[5], so the PIM chip is designed with a Ram-
bus-compatible interface.

Table 1. Major parameters of the PIM architecture.

P.Host P.Mem Bus & Memory
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz
Dynamic issue Width: 6 Static issue Width: 2 P.Host Mem RT: 262. 5 ns
Integer unit num: 6 Integer unit num: 2 P.Mem Mem RT: 50. 5 ns
Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K
FLC_Line: 64 B FLC_Line: 32 B
FLC_Replace policy: LRU FLC_Replace policy: LRU
SLC_Type: WB SLC: N/A
SLC_Size: 256 KB
SLC_Line: 64 B
Replace policy: LRU
Branch penalty: 4 Branch penalty: 2
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17

* FLC stands for the first level cache, SLC for the second level
cache, BR for branch, RT for round-trip latency from the proc-
essor to the memory, and RB for row buffer.

Host Processor
Core

L1 Cache

L2 Cache

P.Host

Rambus
(Memory Bus)

Memory
Processor

Core

L1 Cache

DRAM
Cells

P.Mem

PIM Chip

Fig. 1. The organization of PIM architecture.

2.2 Synchronization Mechanism

In FlexRAM architecture, a hardware synchro-
nization mechanism is provided [13, 14] to syn-
chronize P.Host and P.Mem when they enter the
computation stage. No signals other than those
required for memory access should be introduced
to ensure compatibility with conventional proces-
sors and system buses. However, recent develop-
ment in memory technology, such as Rambus, en-
ables P.Host and P.Mem to exchange information
without adding new signals for memory access.

In PIM architecture, P.Mem must be initiated by
P.Host and cannot perform tasks autonomously.
The P.Host starts a P.Mem by sending it an entry
point (Program Counter value) and an enabling
signal. Sending data from P.Host to P.Mem only
requires to access memory since P.Mem resides in
the memory system of P.Host. Hence, the memory
location used to pass information from P.Host to
P.Mem must have a fixed address that is inde-
pendent of the P.Host context switch. The Rambus
standard provides additional register space in the
memory space. The registers in DRAM chips are
for access mode control, packet packing and un-
packing. The PIM architecture uses the registers in
the register space as command registers from
P.Host to P.Mem. Sending an entry point and an
enabling signal can be regarded as writing to the
register space of DRAMs.

A synchronization variable is used to implement
a barrier between the P.Host and P.Mem. The
synchronization variable can be a register in
Rambus register space. By polling the synchroni-
zation variable, P.Host can synchronize with
P.Mem. The PIM architecture also provides a bar-
rier interface, similar to the general barrier
function call, to enable the programmer to
synchronize processors easily.

2.3 Cache Coherence Mechanism

The contents of the cache become incoherent
during execution when some of the code is exe-
cuted on P.Host and some on P.Mem simultane-
ously. The latest version of data must be obtained
when a processor accesses a variable to avoid in-
correct results. FlexRAM architecture provides
two simple primitives for P.Host, write-back and
invalidation, to manipulate the cache [14]:

write-back: Before P.Mem starts to execute, the
"write-back" primitive forces P.Host to write
back all the dirty lines in its caches to the main
memory where P.Mem may read or modify.

When a line is written back, the corresponding
P.Mem's cache is also updated. This primitive
ensures that P.Mem sees the latest version of
data.

invalidation: After P.Mem finishes the execu-
tion, P.Host invalidates all lines in its cache that
were updated by P.Mem. This primitive ensures
P.Host sees the latest version of data.

The SAGE system will automatically insert the
primitive of barrier , write-back or invalidation in
appropriate locations if required.

3. Related Work

Some relevant studies on PIM architecture, with
reference to the architecture and the compiler, are
introduced.

3.1 Architecture Aspe cts

Several PIM architectures integrate processors
and memory on a single chip.

(a) Vector Processors in DRAM

The VIRAM (Vector IRAM) [22] combines
vector units , a scalar processor, and DRAM on a
single chip. The VIRAM processor consists of an
in-order dual-issue superscalar processor and a
first-level cache, tightly integrated with a vector
execution unit and multiple pipelines. The memory
system includes 96MB of DRAM, connected to
the scalar and vector units via a crossbar. If 16
add-multiply units are used and are clocked at
500MHz, VIRAM can run Linpack at 8 GFLOPS,
five time s faster than a Cray T-90. Other bench-
marks, such as multimedia applications, are re-
ported to run well on VIRAM architecture.

(b) Logic-in-Memory

Several investigations on integrating logic with
memory have been undertaken. C•RAM (compu-
tation RAM) [6] uses special logic in DRAM as a n
MPEG encoder. SmartSIMM [15] uses integrated
logics to overcome the I/O Bus bottleneck. Among
these logic-in-memory architectures, Active Page
[21] is the most general-purpose scheme. Logically,
an Active Page consists of a page of data and a set
of associated functions that operate on the data set.
Physically, this kind of PIM chip, called
RADRAM, carries several Active Pages . Each
512KB memory block is associated with an LE
(Logic Element) which is built by FPGAs. The
logic function of an Active Page can be pro-
grammed when the application is compiled by a

special compiler that can hardwire the FPGA logic
at compile-time. The cost of fabricating a
RADRAM chip is not high because its logic part is
FPGA rather than complicated processors. Con-
ceptually, FPGA can be regarded as a
re-configurable processor and RADRAMs can be
used for several applications if LEs are
re-configured. In RADRAM, only simple func-
tions can be implemented by an Active Page, since
only 1K transistors are present on each LE and
these LEs are in FPGA format. The implemented
functions are simple set operations, such as array
insert/delete, data search, basic arithmetic compu-
tation, table fill, index comparison and data
gather/scatter. According to [21], these operations
are accelerated up to 1000 times the speed of a
simple scalar RISC running at 1GHz with a
non-pipelined memory system.

(c) Processing-in-Memory

Some investigations on high-speed computation
integrate multiple processor cores with memory.
EXECUBE [8], unlike VIRAM that is mem-
ory-centric , is a processor-centric architecture.
EXECUBE integrates sixteen 32KB memory
banks and eight CPUs with a four-link DMA on
the center of the chip. Like the Cray T series on a
single chip , EXECUBE can perform highly para l-
lel computations. However, the biggest challenge
comes from implementation. The first, current
technology only supports a small memory bank in
the above architecture because several processors
on a chip occupy too much area and the die area is
not large enough to accommodate more memory.
The second challenge is the wiring for connectivity,
which might occupy a large area and limit the
speed of the processor.

3.2 Compiler Aspect

Some investigations of compiler have been
studied to utilize the benefits of PIM architectures.
Yelick et al. [12] designed a VIRAM compiler for
Vector-IRAM systems based on the vectorizing
compiler of the Cray system. They modified the
code generator of the original CRAY compiler to
generate both MIPS scalar codes and vector codes
to fit the architectural definition of VIRAM. Barua
et al. [2] proposed a compiler, called Maps, to
generate codes for the Raw chip that is composed
of a set of tiles which integrate processor and
memory. The main contributions of their work are
the distribution of data across several tiles and
disambiguating memory access to specific tiles.
Using more tiles can increase more memory access
paralle lism. Disambiguating memory access can

enables the compiler to manage the communica-
tion between tiles efficiently. In addition to the
above systems, Gupta et al. [27] developed a com-
piler that allows different cache line sizes for
various portions of the program. Moritz et al. [20]
designed a framework, called Fle xCache, to cache
data at compile-time. This framework is based on
a flexible software platform, with the possibility of
adding hardware resources if required.

4. Methodology

Most current parallelizing compilers focus on
the transformation of loops to execute all or some
iterations concurrently, in a so-called itera-
tion-based approach. This approach is suited to
homogeneous and tightly coupled multi-processor
systems. However, it has an obvious disadvantage
for heterogeneous multi-processor platforms be-
cause iterations have similar behavior but the ca-
pabilities of heterogeneous processors are diverse.
Therefore, a different approach is adopted here,
using the statements in a loop as a basic analysis
unit, called statement-based approach, to develop
the SAGE system.

SAGE (Statement- Analysis- Grouping- Evalua-
tion) is an automatic parallelizing compiler, that
partitions and schedules an original program to
exploit the specialties of the host and the me mory
processor. At first, the source program is split into
blocks of statements according to dependence re-
lations. Then, the Weight Partition Dependence
Graph (WPG) is generated, and the weight of each
block is evaluated. Finally, the blocks are dis-
patched to either the host or the memory proces-
sors, according to which processor is more suitable
for executing the block. The major difference be-
tween SAGE and other parallelizing systems is
that it uses statement rather than iteration as the
basic unit of analysis. This approach can fully ex-
ploit the characteristics of statements in a program
and dispatch the most suitable tasks to the host and
the memory processors.

Table 2. A simple fully parallelizable program.

Program Weight
for P.Host

Weight for
P.Mem

 DO I = 1 to N
S1: A= A mod B
S2: C= D[I] + E
S3: F= G[I] + H[I]
 ENDDO

3
5
6

6
1
2

Table 2 presents a simple example to demo n-
strate the advantages of statement-based paralleli-
zation. The program is fully parallelizable and can
be partitioned into statements or iterations. The
table lists the assumed statement weights for the
P.Host and P.Mem. Table 3 shows five paralleliza-
tion cases in Table 2 and their execution times.
The first two involve executing the program solely
on P.Host and P.Mem, respectively. Case 3 paral-
lelizes the program using conventional paralleliz-
ing compilers, such as SUIF [8] or Polaris [3] to
identify the parallelizable loops and dispatch them
for execution on P.Host and P.Mem. This approach
only achieves good speedup for processors with
homogeneous capabilities (including memory ac-
cess latency, computing power, and so on). In case
4, the iterations are dispatched to the processors
according to the processors' capabilities, but the
compiler does not consider the discrepancies
among processors in executing statements. Case 5
uses the statement-based analysis approach (i.e.,
optimized by SAGE). This approach outperforms
all the others since it dispatches statements to
P.Host and P.Mem by accounting for the charac-
teristics of statements and the capabilities of proc-
essors, motivating the development of the SAGE
system for asymmetric multiprocessor environ-
ments. Figure 2 illustrates the organization of the
SAGE system.

4.1 Statement Splitting and WPG Construction

Statement Splitting splits the dependence graph
by Node Partition Π in [18]. WPG Construction
constructs the Weighted Partition Dependence
Graph (WPG), to be used in the subs equent stages
of Weight Evaluation, Wavefront Generation and
Schedule Determination.

The definitions relevant to Statement Splitting
are introduced as below.

Definition 1 (Loop Denotation) [18]

 A loop is denoted by L = (I1 , I2 , … . In)(S1 ,
S2 , … . Sk), where Ij, 1=j=n, is a loop index, and Sd,
1=d=k , is a body statement which may be an as-
signment statement or another loop. ¦

Definition 2 (Node PartitionΠ) [18]

For a given loop L on the dependence graph G,
we define a node partition Π of { S1 , S2 , … . Sd}
in such a way that Sk and Sl , 1=k=d, 1=l=d, k≠ l ,
are in the same block (cell) of partition if and only
if Sk ∆ Sl and Sl ∆ Sk where ∆ is an indirect data
dependence relation.

On the partition Π={π1,π2 ,… ,πn}, we define
partial ordering relations α, α^, and αo as follows.

For i ≠ j:

1) πi α πj iff there exist Sk ∈ πi and Sl ∈ πj
such that Sk δ Sl , where δ is the true de-
pendence relation .

2) πi α^πj iff there exist Sk ∈ πi and Sl ∈ πj such
that Sk δ̂ Sl, where δ^ is the anti depend-
ence relation.

3) πi α
oπj iff there exist Sk ∈ πi and Sl ∈ πj such

that Sk δo Sl, where δo is the output depend-
ence relation. ¦

 Wavefront
Generation

 Schedule
Determination

Subroutine
Generation

Source
Program

Subroutine
for

P.Host

Subroutine
for

P.Mem

Weight
Evaluation

Statement
Splitting

 WPG
Construction

Fig. 2. The sequence of compiling stages in SAGE.

Table 3. Five parallelizing cases and their execution

times.

Case Description Execution Time

1
Host processor operates
solely

Latency = [PH(S1)+ PH(S2)+
PH(S3)]*# of iterations =
(3+5+6)N = 14 N

2
Memory processor oper-
ates solely

Latency = [PM(S1)+
PM(S2)+ PM(S3)]* # of itera-
tions = (6+1+2)N = 9 N

3
Host and memory proces-
sors cooperate in symmet-
ric workload

Latency = max((3+5+6)*
0.5N, (6+2+1)* 0.5 N) = 7 N

4

Host and memory proces-
sors cooperate in asym-
metric workload by paral-
lelizing iteration space of
the loop

Dispatch workload in propor-
tion to the capability ratio of
PH and PM obtained from
Case 1 and Case2: PH: PM =
9:14 Latency=14* (9/23)N=
5.48 N

5

Host and memory proces-
sors cooperate in asy m-
metric workload by SAGE
optimization

Latency = max (PH(S1) * N,
PM(S2,S3)*N) = 3 N (Here
S1 is more suitable for P.Host,
but S2 and S3 are more suit -

Based on the definition, the statements form a
block (cell) of partition Π if and only if there exist
a directed dependence cycle. Two blocks have
true/anti/output dependence if and only if there
exist a true/anti/output dependence between two
statements , one for each block.

Definition 3 (Weighted Partition Dependence
Graph)[9][10]

Given a node partition Π defined in Definition 2,
we define a weighted partition dependence graph
WPG(B,E) as follows. For each πi ∈Π, there is a
corresponding node bi 〈 Ii , S i , Wi , Oi 〉 ∈ B, where
Ii denotes the loop index; Si represents the body
statements ; Wi is the weight of node i in the form
of Wi (PH,PM) with PH and PM be the weights of
P.Host and P.Mem respectively; and Oi is the exe-
cution order of this node. There is an edge eij∈E
from bi to bj if bi and bj have dependence relations
α, α^, and αo defined in Definition 1. These de-
pendence relations are respectively denoted by

, → →anti , and →O .

Based on these three definitions, we propose a
Statement Splitting algorithm (Algorithm 1) to
partition the loops:

4.2 Weight Evaluation

Two approaches to evluating weight can be
taken. One is to predict the execution time of
programs by profiling the dominant parts [28]. The
other considers the operations in a statement and
estimates the program execution time by looking
up a statistical operations table [24]. The former
method may be more accurate, but the predicted
result cannot be reused; the latter can determine

statements for suitable processors but the
estimated program execution time is not
sufficiently accurate. Hence, the Self-Patch Weight
Evaluation scheme was designed to combine the
benefits of both approaches. For a detailed
description of this scheme, please refer to [4]

4.3 Wavefront Generation and Schedule
Determination

This section presents an algorithm for schedul-
ing P.Host and P.Mem. In our previous work [9,
10], a method to obtain a load-balanced schedule
for P.Host and P.Mem was proposed. However, the
method has two weaknesses . First, it concentrates
more on balancing the workload of processors but
less on the capability difference between P.Host
and P.Mem. Second, the dispatch mechanism re-
quires large time complexity. In this paper, a new
scheduling mechanism has been devised to solve
these two problems. In solving the first problem,
the new mechanism classifies the blocks into two
sets , according to the weight difference between
P.Host and P.Mem. Then, suitable blocks of each
set are dispatched to P.Host and P.Mem, respec-
tively. A seesawing dispatch mechanism is devised
to reduce the time comple xity. The weights of the
blocks in partition Π are computed first, and the
execution order of each block is then determined
according to the dependence relations between the
blocks. Blocks with the same execution order are
assigned to a wavefront. Wavefronts are executed
in sequence, but the blocks in the same wavefront
will be executed simultaneously, scheduled to
P.Host and P.Mem according to their weights.

Given a weighted partition dependence graph
WPG=(B,E) , in which the weight and the order of
the blocks has not been determined, the scheduling
algorithm involves the following steps .

Step 1: Initialize the execution order of each block
and determine the P.Host weight and
P.Mem weight of each block by the weight
evaluation mechanism mentioned earlier.

Step 2: Determine the execution order (wavefront)
of each block by the following rule: A
block's execution order equals the maxi-
mum execution order of all of its succes-
sors plus one.

Step 3: Set wavefront number j =1. Perform the
following actions until j = maximum exe-
cution order:

3.1 Store the blocks whose execution order

Algorithm 1. (Statement Splitting Algorithm)

Given a loop L = (I1, I2, … . Id) (S1, S2, … . Sd)
Step 1: Construct dependence Graph G by

analyzing subscript expressions and
index pattern.

Step 2: Establish a node partition Π on G as
defined in Definition 2. If there are
large blocks caused from control de-
pendence relations, convert control
dependence into data dependence first
[16], and then part ition the depend-
ence graph.

Step 3: On the partition Π, establish a
weighted partition dependence graph
WPG(B,E) defined in Definition 3.

equals j in the set wf_tmp.

3.2 Divide wf_tmp into two sets , ph_tmp and
pm_tmp. The blocks with P.Host weight =
P.Mem weight are stored in ph_tmp . The
other blocks (i.e., P.Mem weight < P.Host
weight) are put into pm_tmp . Restated, the
blocks in ph_tmp perform better if exe-
cuted on P.Host.

3.3 Sort ph_tmp and pm_tmp in order of de-
creasing P.Host weight and P.Mem weight,
respectively. Set token = P.Host.

3.4 Perform the seesawing dispatch mecha-
nism:

3.4.1 If token = P.Host, perform Step 3.4.1.1,
else perform Step 3.4.1.2

3.4.1.1 Put the first block (with largest
P.Host weight) from ph_tmp into
set ph_sch. If ph_tmp is empty, put
the largest block from pm_tmp into
ph_sch .

3.4.1.2 Put the first block (with largest
P.Mem weight) from pm_tmp into
set pm_sch. If pm_tmp is empty,
put the largest block from ph_tmp
into pm_sch.

3.4.2 If the total weight of P.Host in ph_sch
= the total weight of P.Mem in
pm_sch, set token = P.Mem. (This
means P.Mem requires more blocks
to achieve load-balance), else set to-
ken = P.Host.

3.4.3 If both ph_tmp and pm_tmp are
empty, then generate wavefront Wfj
={ph_sch , pm_sch}; insert a barrier
to synchronize P.Host and P.Mem,
and set j = j + 1; else return to Step
3.4.1.

4.4 Example

A simple synthetic program, shown in Fig. 3, il-
lustrates the processes of SAGE. In the Statement
Splitting stage, the loops are partitioned into seven
separate loops (by Algorithm 1). Figure 4 presents
the results and the blocks associated with these
loops. Figure 5 shows the WPG graph obtained by
applying the WPG Construction . The WPG graph
consists of blocks (nodes) and edges. A block has
four attributes: I (the set of loop indices), S (the set
of statements in the loop), W (the weights of

P.Host and P.Mem), and O (the execution order of
the block). An edge specifies the dependence rela-
tion between two connected blocks, as defined in
Definition 3. Using the Weight Evaluation, the
P.Host weight and the P.Mem weight in each block
can be determined, as shown in Fig. 6. Based on
the P.Host weight, the P.Mem weight, and the de-
pendence relations between the blocks, the execu-
tion schedule can be generated using Wavefront
Generation and Schedule Determination in Algo-
rithm 2. The seven blocks are scheduled into three
wavefronts, as shown in Fig. 7. In the first wave-
front, block b1 is dispatched to P.Host and blocks
b2, b3, and b6 are dispatched to P.Mem. In the
second wavefront, block b7 is dispatched to P.Host
and block b4 is dispatched to P.Mem. In the third
wavefront, only one block b5 is present, and is
dispatched to P.Host because its P.Host weight is
less than P.Mem weight. Between two contiguous
wavefronts, a synchronization barrier is required.
Figure 8 presents those results.

// Block b1
DO I = 1 TO N

DO J = 1 TO M
S1: A(I,J) = B(I,J)+C(I,J)
S2: A(I,J) = A(I-1,J)+A(I+1,J)+C
S3: X = A(I,J)+2
S4: A(I,J+1)=X*7

ENDDO
ENDDO

// Block b2
DO I = 1 TO N

DO J = 1 TO M
S5: D(I,J) = 2*D(I,J)+3

ENDDO
ENDDO

// Block b3
DO I = 1 TO N

DO J = 1 TO M
S6: E(I,J) = 2*E(I,J)+2

ENDDO
ENDDO

// Block b4
DO J = 1 TO N

DO I = 1 TO M
S7: F(I,J) = E(I,J)*F(I,J)

ENDDO
ENDDO

// Block b5
DO J = 1 TO N

DO I = 1 TO M
S8: F(I,J+1) = F(I,J)+5

ENDDO
ENDDO

// Block b6
DO J = 1 TO N

DO I = 1 TO M
S9: G(I,J) = G(I-1,J)*G(I,J-1)

ENDDO
ENDDO

// Block b7
DO I = 1 TO N

DO J = 1 TO M
S10: Z = A(I,J)+A(I,J-1)
S11: A(I,J) = Z*C

ENDDO
ENDDO

Fig. 4. Resulting program of Fig. 3 after Statement
Splitting.

Fig.3. A simple program with three loops.

// Loop 1

DO I = 1 TO N

DO J = 1 TO M
S1: A(I,J) = B(I,J)+C(I,J)
S2: A(I,J) = A(I-1,J)+A(I+1,J)+C
S3: X = A(I,J)+2
S4: A(I,J+1)=X*7
S5: D(I,J) = 2*D(I,J)+3
S6: E(I,J) = 2*E(I,J)+2

ENDDO
ENDDO

// Loop 2

DO J = 1 TO N

DO I = 1 TO M
S7: F(I,J) = E(I,J)*F(I,J)
S8: F(I,J+1) = F(I,J)+5
S9: G(I,J) = G(I-1,J)*G(I,J-1)

ENDDO
ENDDO

// Loop 3

DO I = 1 TO N

DO J = 1 TO M
S10: Z = A(I,J)+A(I,J-1)
S11: A(I,J) = Z*C

ENDDO
ENDDO

5. Experimental Results

The code generated by our SAGE system is tar-
geted on the FlexRAM simulator developed by
IA-COMA Lab. in UIUC [13]. Derived from
MINT [26], this simulator models the environment
of a dynamic superscalar multiprocessor and the
detailed memory behavior cycle by cycle. Table 1
lists the major architectural parameters (Section
2.1). In this experiment, only one P.Mem processor
is spawned to reflect the benefits of the memory
processor. The applications evaluated include five
benchmarks - swim and tomcatv from SPEC95,
strmm from BLAS3, ep from the serial version of
NAS and fft from [23] . This simulator is executed
on an SGI Origin200, using a MIPSPro Fortran
compiler with the optimizing option “-O2” to com-
pile these five benchmarks. According to the
claims made for the MIPSPro compiler, option
“-O2” provides several instruction level optimiza-
tions, such as scalar replacement, tiling, constant
propagation, dead code elimination, and others .
Table 4 demonstrates the results of the experiment,
in which "P.Host only" denotes that the applica-
tions are executed on P.Host alone; "P.Mem only"
denotes that the applications are executed on
P.Mem alone, and “SAGE opt” indicates that the
applications are transformed by SAGE for execu-
tion on one P.Host and one P.Mem simultaneously.
"Speedup" is obtained by dividing "P.Host only "
by "SAGE opt".

I={N,M}
S={S1,S2,

S3,S4}

W= O=

b1

I={N,M} S={S5}

W = O=

b2

I={N,M} S={S6}

W = O=

b3

I={N,M} S={S7}

W = O=

b4

I={N,M} S={S8}

W = O=

b5

I={N,M} S={S9}

W = O=

b6

I={N,M}
S={S10,

S11}

W= O=

b7

Fig. 5. WPG graph of the program in Fig. 3 after
WPG Construction.

I={N,M}
S={S1,S2,

S3,S4}

W={39,48} O=

b1

I={N,M} S={S5}

W={14,12} O=

b2

I={N,M} S={S6}

W={14,12} O=

b3

I={N,M} S={S7}

W={16,11} O=

b4

I={N,M} S={S8}

W={12,14} O=

b5

I={N,M} S={S9}

W={21,18} O=

b6

I={N,M}
S={S10,

S11}

W={18,21} O=

b7

Fig. 6. Resulting WPG graph of Fig. 5 after Weight
Evaluation.

I={N,M} S={S1,S2,
S3,S4}

W={39,48} O=1

b1
I={N,M} S={S5}

W={14,12} O=1

b2
I={N,M} S={S6}

W={14,12} O=1

b3

I={N,M} S={S7}

W={16,11} O=2

b4

I={N,M} S={S8}

W={12,14} O=3

b5

I={N,M} S={S9}

W={21,18} O=1

b6

I={N,M}
S={S10,

S11}

W={18,21} O=2

b7

Wavefront 1

Wavefront 2

Wavefront 3

Fig. 7. The WPG graph in Fig. 6 after Wavefront Ge n-
eration.

b1 b2

b3

b5

b4
b7

b6

 -
10 -
 -
20 -
 -
30 -
 -
40 -
 -
50 -
 -
60 -
 -
70 -
 -

P.HostTime P.Mem

Wavefront 1

Wavefront 2

Wavefront 3

Fig. 8. The execution schedule for the P.Host and
P.Mem of Fig. 3.

In Table 4, swim has the best speedup because it
can be partitioned into many blocks for scheduling
to P.Host and P.Mem, according to the characteris-
tics of blocks and processors. Restated, swim has
more potential parallelism. In contrast, strmm,
tomcatv, fft , and ep are intrinsically sequential.
They can only be partitioned into several large
blocks, preventing the generation of load-balance
schedules. Therefore, even SAGE can not greatly
improve the their performance.

Figure 9 depicts the experimental results with
reference to the four major parts - useful (cycles
for executing useful instructions), sync (cycles for
synchronizing with memory processors), memory
(cycles for memory access, including the time re-
quired for cache coherence) and misc (cycles for
other hazards). Except fft, the "useful" parts of the
benchmarks in the "P.Host only" mode are smaller

than those in the "P.Mem only" mode and the
"memory" parts in the "P.Host only" mode are
larger than those in the "P.Mem only" mode. This
observation explains the fact that the host proces-
sor computes more powerfully, wh ile the memory
processor has shorter memory access latency, as
mentioned above. Additionally, fft cannot get
benefit from memory access in "P.Mem only"
mode because its data are too few, such that all
data can be cached in the second level cache of
P.Host. On the other hand, the "useful" and "mem-
ory" parts in the "SAGE opt" mode are signif i-
cantly reduced since swim can be effectively part i-
tioned and scheduled by SAGE. However, strmm,
tomcatv and fft cannot be partitioned into many
blocks; hence, synchronization time is required
and their execution times are not greatly reduced
by SAGE. Notably, synchronization time i s re-
quired when P.Host and P.Mem execute the pro-
gram simu ltaneously, but do not finish the execu-
tion at the same time. In the circumstances, one
processor must wait for the other. The performance
of the ep benchmark cannot be improved greatly
even if P.Host and P.Mem cooperate to execute
this benchmark in "SAGE opt" mode since the
memory access time is rather small.

6. Conclusion

This study proposes an automatic source- to-
source parallelization system, called SAGE, for a
new class of high-performance SoC architecture,
Processor-in-Memory, which consists of a host
processor and a memory processor. The SAGE
system partitions source codes into blocks by
statement splitting; estimates the weight (execu-
tion time) of each block, and then schedules each
block to the most suitable processor for execution.
This study refined our earlier work by devising a
new scheduling mechanism and integrating a new
weight evaluation mechanism. Five real bench-
marks, swim, tomcatv, strmm, ep, and fft were ex-
perimentally considered to evaluate the effects of
SAGE system. The simulator used here is a PIM
architecture that consists of one P.Host and one
P.Mem, derived from FlexRAM. The obtained
speedups are from 1.01 to 1.96, depending on the
characteristics of applications and their potential
parallelism. The techniques proposed here can be
extended to run on DIVA, EXECUBE and
FlexRAM, with several memory chips, each of
which has several memory processors.

0.000E+00

5.000E+07

1.000E+08

1.500E+08

2.000E+08

2.500E+08

3.000E+08

3.500E+08

4.000E+08

4.500E+08

5.000E+08

sw
im (P

.Host
 on

ly)

swim (SA
GE o

pt)

strm
m (P

.Host
onl

y)

strm
m (SA

GE o
pt)

tom
catv

 (P.
Host

onl
y)

tom
catv

 (SA
GE o

pt)

fft (
P.H

ost
 on

ly)

fft (
SA

GE op
t)

ep
(P.

Host
 on

ly)

ep (
SAG

E o
pt)

E
xe

cu
ti

on
 C

yc
le

s

miscs
memory
sync
useful

Fig. 9. The execution times of five benchmarks by P.Host
only, P.Mem only, and optimized by SAGE.

Table 4. The execution cycles of five benchmarks.

Benchm
ark

P.Host only P.Mem
only

SAGE opt Speed
up

swim 228289321 355801581 116669760 1.96

strmm 233969505 356808711 204417723 1.14

tomcatv 380235321 455758516 375200330 1.01

fft 117998621 403954552 101841407 1.15

ep 103044816 250925512 86924945 1.19

7. References

[1] J. R. Allen, D. Callahan, K. Kennedy, Auto-
matic decomposition of scientific programs
for parallel execution, in: Proc. ACM Sympo-
sium on the Principles of Programming Lan-
guages (Munich, Ge rmany, Jan. 1987).

[2] R. Barua, W. Lee, S. Amarasinghe, A. Agar-
wal, Maps: A Compiler-managed Memory
System for Raw Machines, in: Proc. 26th An-
nual International Symposium on Computer
Architecture, (May 1999) 4-15.

[3] W. Blume, R. Eigenmann, K. Faigin, J. Grout,
J. Hoeflinger, D. Padua, P. Petersen, B. Pot-
tenger, L. Rauchwerger, P. Tu, S. Weatherford,
Effective Automatic Parallelization with Po-
laris , International Journal of Parallel Pro-
gramming (May 1995).

[4] S. L. Chu, T. C. Huang, L. C. Lee, Improving
Workload Ba lance and Code Optimization on
Processor-in-Memory Systems , to appear in
Journal of Systems and Software (2003).

[5] R. Crisp, Direct Rambus Technology: the New
Main Memory Standard, IEEE Micro, (Nov.
1997) 18-28.

[6] D. Elliott, M. Stumm, M. Snelgrove, Compu-
tational RAM: The Case for SIMD Comput-
ing in Memory, in: Proc. ISCA Workshop on
Mixing Logic and DRAM (1997).

[7] M. Hall , P. Kogge , J. Koller , P. Diniz , J.
Chame , J. Draper , J. LaCoss , J. Granacki , J.
Brockman , A . Srivastava , W. Athas , V.
Freeh , J. Shin , J. Park, Mapping Irregular
Applications to DIVA , a PIM-Based
Data-Intensive Architecture, in: Proc. 1999
Conference on Supercomputing (Jan. 1999).

[8] M. Hall, J. Anderson, S. Amarasinghe, B.
Murphy, S. Liao, E. Bugnion, M. Lam,
Maximizing Multiprocessor Performance with
the SUIF Co mpiler, IEEE Computer (Dec.
1996).

[9] T. C. Huang and S. L. Chu, SAGE: A New
Analysis and Optimization System for
FlexRAM Architecture, in: Proc. IMS 2000,
Lecture Notes in Computer Science, Vol. 2107,
(Springer-Verlag, Berlin, 2001) 160-168.

[10] T. C. Huang and S. L. Chu, A New Analysis
Approach for Intelligent Memory Systems, in:
Proc. ISCA 16th International Conference on

Computers and Their Applications (Seattle,
WA, Mar. 2001) 452-457.

[11] W. Huang, Exploiting Application Parallelism
Using Advanced Intelligent Memory – The
FlexRAM approach, MS Thesis, Department
of Computer Science, University of Illinois at
Urbana-Champaign, 1999.

[12] D. Judd and K. Yelick, Exploiting On-Chip
Memory Bandwidth in the VIRAM Compiler,
in: Proc. 2nd Workshop on Intelligent Mem-
ory Systems (Cambridge, MA, Nov. 2000).

[13] Y. Kang, W. Huang, S. Yoo, D. Keen, Z. Ge, V.
Lam, P. Pattnaik, J. Torrellas, FlexRAM: To-
ward an Advanced Intelligent Memory System,
in: Proc. International Conference on Co m-
puter Design (Austin, Texas, Oct. 1999).

[14] Y. Kang, An Intelligent Memory for
Data-Parallel Applications, Ph.D. Thesis, De-
partment of Computer Science, University of
Illinois at Urbana-Champaign, 1999.

[15] K. Keeton, R Arpaci-Dusseau, D.A.Patterson,
IRAM and SmartSIMM: Overcoming the I/O
Bus Bottleneck, in: Proc. ISCA Workshop on
Mixing Logic and DRAM (1997).

[16] K. Kennedy and K. S. McKinley, Loop Dis-
tribution with Arbitrary Control Flow, in: Proc.
Supercomputing ’90 (New York, Nov. 1990).

[17] P. Kogge, The EXECUBE Approach to Mas-
sively Parallel Processing, in: Proc. Interna-
tional Conference on Parallel Processing
(August 1994).

[18] D. J. Kuck, A Survey of Parallel Machine Or-
ganization and Programming, ACM Comput.
Surv. Vol 9, 1 (Mar. 1977) 29-59.

[19] D. Landis, L. Roth, P. Hulina, L. Coraor, S.
Deno, Evaluation of Computing in Memory
Architectures for Digital Image Processing
Applications, in: Proc. International Confer-
ence on Computer Design (1999) 146-151.

[20] C. A. Moritz, M. Frank, S. Amarasinghe,
FlexCache: A Framework for flexible Com-
piler Generated Data Caching, in: Proc. 2nd
Workshop on Intelligent Memory Systems
(Cambridge, MA, Nov. 2000).

[21] M. Oskin, F. Chong, T. Sherwood, Active
Pages: A Computation Model for Intelligent
Memory, in: Proc. 25th Annual International

Symposium on Computer Architecture (June
1998) 192-203.

[22] D. Patterson, T. Anderson, N. Cardwell, R.
Fromm, K. Keeton, C. Kozyrakis, R. Tomas,
K. Yelick, A Case for Intelligent DRAM,
IEEE Micro (Mar./Apr. 1997) 33-44.

[23] W. H. Press, S.A. Teukolsky, W. T. Vetterling,
B. P. Flannery, Numerical Recipes in Fortran
77 (Cambridge University Press, 1992).

[24] B. Reistad and D. K. Gifford, Static Depend-
ent Costs for Estimating Execution Time, in:
Proc. ACM Conference on LISP and Func-
tional Programming (1994) 65-78.

[25] K. Snip, D.G. Elliott, M. Margala, N. G. Dur-
dle, Using Computational RAM for Volume
Rendering, in: Proc. 13th Annual IEEE Inter-
national Conference on ASIC/SOC (2000)
253 –257

[26] J. Veenstra and R. Fowler, MINT: A Front End
for Efficient Simulation of Shared-Memory
Multiprocessors , in: Proc. MAS-COTS’94
(Jan. 1994) 201-207.

[27] V. Veidenbaum, W. Tang, R. Gupta, A. Nico-
lau, X. Ji, A Adapting Cache Line Size to Ap-
plication Behavior, in: Proc. Supercomput-
ing’99 (Jun, 1999).

[28] K. Y. Wang, Precise Compile-Cime Per-
formance Prediction for Superscalar-Based
Computers, in: Proc. ACM SIGPLAN '94
Conference on Programming Language De-
sign and Implementation (1994) 73 – 84.

