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Abstract 

Continuous improvements in semiconductor fab-
rication density are supporting new classes of 
System-on-a-Chip (SoC) architectures that com-
bine extensive processing logic/processor with 
high-density memory. Such architectures are gen-
erally called Processor-in-Memory or Intelligent 
Memory and can support high-performance com-
puting by reducing the performance gap between 
the processor and the memory. This architecture 
comb ines various processors in a single system. 
These processors are characterized by their com-
putation and memory -access capabilities. There-
fore, a novel strategy must be developed to iden-
tify their capabilities and dispatch the most appro-
priate jobs to them in order to exploit them fully. 
Accordingly, this study presents an automatic 
source-to-source parallelizing system, called 
SAGE, to exploit the advantages  of Proces-
sor-in-Memory architectures. Unlike conventional 
iteration-based parallelizing systems, SAGE 
adopts statement-based analyzing approaches. This 
study addresses the one-host and one-memory 
processor configuration. The strategy of the SAGE 
system, in which the original program is decom-
posed into blocks and a  feasible execution sched-
ule is produced for the host and memory proces-
sors, is investigated as well. The experimental re-
sults for real benchmarks are also discussed. 

Keywords: Processor-in-Memory, statement 
analysis, SAGE, SoC. 

1. Introduction 

In current high-performance computer architec-
tures, the processors run many times faster than 
the computer's main memory. This performance 
gap is often referred to as the Memory Wall [25]. 
This gap can be reduced using the Sys-
tem-on-a-Chip strategy, which integrates the proc-

essor(s) and memory on a single chip. The rapid 
growth in silicon fabrication density has made this 
strategy  accomplished. The Semiconductor Indus-
try Association’s Technology Roadmap predicts 
that a single high-end microprocessor die will 
contain approximately 84 million logic transistors 
by 2009. The density of dynamic random access 
memory (DRAM) is increasing even more rapidly. 
By 2009, a state-of-the-art DRAM chip is ex-
pected to have a capacity of 2Gbytes. Larger scale 
problems will be easily handled “on-chip” using 
these tremendous increases in memory and logic 
density [19]. Accordingly, many researchers have 
addressed integrating computing logic and high 
density DRAM on a single die [7, 13, 17, 21, 22] 
as so-called them Processor-in-Memory (PIM) or 
Intelligent RAM (IRAM).  

Integrating DRAM and computing logic on a 
single integrated circuit (IC) die generates PIM 
architecture with several desirable characteristics. 
First, the physical size and weight of the overall 
design can be reduced. As more functions are in-
tegrated on each chip, fewer chips are required for 
a complete design. Second, very wide on-chip 
buses between the CPU and memory can be used, 
since DRAM is located with computing logic on a 
single die. Third, eliminating off-chip drivers re-
duces the power consumption and latency [19]. 

The design philosophy of PIM chips is to re-
place the main memory chips in a computer sys-
tem rather than to rebuild an entirely new system. 
Accordingly, PIM chips may act as co-processors 
when the main processor spawns them. This ap-
proach is employed by Active Page [21], DIVA [7] 
and FlexRAM [11, 13, 14], among others.  

This class of architectures constitutes a hierar-
chical hybrid multiprocessor environment by the 
host (main) processor and the memory processors. 
The host processor is  more powerful but have a 
deep cache hierarchy and higher latency when 



accessing memory. In contrast, memory processors 
are normally less powerful but have a lower la-
tency in memory access. The main problems ad-
dressed here concern the method for dispatching 
suitable tasks to these different processors accord-
ing to their characteristics to reduce execution 
times, and the method for partitioning the original 
program to execute simultaneously on these het-
erogeneous processor combinations. 

Previous studies of programming for PIM archi-
tectures [7, 11, 13, 17, 22] have concentrated on 
spawning as many processors as possible to in-
crease speedup, rather than the capability diffe r-
ence between the host and memory processors. 
However, such an approach does not exp loit  the 
real advantages of PIM architectures. This study 
refines our earlier SAGE (State-
ment-Analysis -Grouping-Evaluation) system [4, 9, 
10] that integrates statement splitting, weight 
evaluation and scheduling mechanism. The orig i-
nal scheduling mechanism is improved to generate 
a superior execution schedule with a reduced time 
complexity, using our new seesaw dispatching 
mechanism. A weight evaluation mechanism is 
established to obtain more precise expected execu-
tion time, called weight. The SAGE system can 
automatically analyze the source program, gener-
ate a Weight Partition Dependence Graph (WPG), 
determine the weight of each block, and then dis-
patch the most suitable blocks for execution on the 
host and memory processors . 

The rest of this paper is organized as follows: 
Section 2 introduces the architectures of PIM. Sec-
tion 3 reviews other related work. Section 4 de-
scribes our SAGE system and the algorithms. Sec-
tion 5 illustrates an example. Section 6 presents 
experimental results. Conclusions are finally 
drawn in Section 7. 

2. Processor-in-Memory Architecture  

2.1 Architecture Description 

Figure 1 depicts the organization of the PIM ar-
chitecture evaluated in this study. It contains an 
off-the-shelf processor—  P.Host, and a PIM chip. 
The PIM chip integrates one memory processor—  
P.Mem with 64 Mbytes of DRAM. This architec-
ture is derived from FlexRAM [11, 13, 14]. The 
tiny memory processors (P.Array) in the original 
FlexRAM are omitted to reduce the complexity of 
analysis . The techniques presented in this paper 
involve one P.Host and one P.Mem configuration, 
and can be extended to support multiple P.Mems . 

Table 1 lists the main architectural parameters of 
the PIM architecture. P.Host is a six-issue super-
scalar processor that allows out-of-order execution 
and runs at 800MHz, while P.Mem is a two -issue 
superscalar processor with in-order capability and 
runs at 400MHz. P.Mem has lower memory access 
latency than the P.Host since the former is inte-
grated with DRAM. Thus, computation-bound 
codes are more suitable for running on the P.Host, 
while memory -bound codes are preferably running 
on the P.Mem to increase efficiency. 

The PIM chip is designed to replace regular 
DRAMs in current computer systems, and must 
therefore meet a memory standard that involves 
additional power and ground signals to support 
on-chip processing. One such standard is Rambus 
[5], so the PIM chip is designed with a Ram-
bus-compatible interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Major parameters of the PIM architecture.  

P.Host P.Mem Bus & Memory  
Working Freq: 800 MHz Working Freq: 400 MHz Bus Freq: 100 MHz 
Dynamic issue Width: 6  Static issue Width: 2 P.Host Mem RT: 262. 5 ns 
Integer unit num: 6  Integer unit num:  2 P.Mem Mem RT: 50. 5 ns 
Floating unit num: 4  Floating  unit num: 2  Bus Width: 16 B 
FLC_Type: WT FLC_Type: WT Mem_Data_Transfer: 16  
FLC_Size: 32 KB FLC_Size: 16 KB Mem_Row_Width: 4K 
FLC_Line: 64 B FLC_Line: 32 B   
FLC_Replace policy: LRU FLC_Replace policy: LRU  
SLC_Type: WB SLC: N/A  
SLC_Size: 256 KB   
SLC_Line: 64 B   
Replace policy: LRU    
Branch penalty: 4 Branch penalty: 2   
P.Host_Mem_Delay: 88 P.Mem_Mem_Delay: 17   

* FLC stands for the first level cache, SLC for the second level 
cache, BR for branch, RT for round-trip latency from the proc-
essor to the memory, and RB for row buffer. 
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Fig. 1. The organization of PIM architecture. 



2.2 Synchronization Mechanism 

In FlexRAM architecture, a hardware synchro-
nization mechanism is provided [13, 14] to syn-
chronize P.Host and P.Mem when they enter the 
computation stage. No signals other than those 
required for memory access should be introduced 
to ensure compatibility with conventional proces-
sors and system buses. However, recent develop-
ment in memory technology, such as Rambus, en-
ables P.Host and P.Mem to exchange information 
without adding new signals for memory access. 

In PIM architecture, P.Mem must be initiated by 
P.Host and cannot perform tasks autonomously. 
The P.Host starts a P.Mem by sending it an entry 
point (Program Counter value) and an enabling 
signal. Sending data from P.Host to P.Mem only 
requires to access memory since P.Mem resides in 
the memory system of P.Host. Hence, the memory 
location used to pass information from P.Host to 
P.Mem must have a fixed address that is inde-
pendent of the P.Host context switch. The Rambus 
standard provides additional register space in the 
memory space. The registers in DRAM chips are 
for access mode control, packet packing and un-
packing. The PIM  architecture uses the registers in 
the register space as command registers from 
P.Host to P.Mem. Sending an entry point and an 
enabling signal can be regarded as writing to the 
register space of DRAMs. 

A synchronization variable  is used to implement 
a barrier between the P.Host and P.Mem. The 
synchronization variable can be a register in 
Rambus register space. By polling the synchroni-
zation variable, P.Host can synchronize with 
P.Mem. The PIM architecture also provides a bar-
rier interface, similar to the general barrier 
function call, to enable the programmer to 
synchronize processors easily. 

2.3 Cache Coherence Mechanism 

The contents of the cache become incoherent 
during execution when some of the code is exe-
cuted on P.Host and some on P.Mem simultane-
ously. The latest version of data must be obtained 
when a processor accesses a variable to avoid in-
correct results. FlexRAM architecture provides 
two simple primitives for P.Host, write-back  and 
invalidation, to manipulate the cache [14]:  

write-back: Before P.Mem starts to execute, the 
"write-back" primitive forces P.Host to write 
back all the dirty lines in its caches to the main 
memory where P.Mem may read or modify. 

When a line is written back, the corresponding 
P.Mem's cache is also updated. This primitive 
ensures that P.Mem sees the latest version of 
data.  

invalidation: After P.Mem finishes the execu-
tion, P.Host invalidates all lines in its cache that 
were updated by P.Mem. This primitive ensures 
P.Host sees the latest version of data. 

The SAGE system will automatically insert the 
primitive of barrier , write-back  or invalidation in 
appropriate locations if required. 

3. Related Work 

Some relevant studies on PIM architecture, with 
reference to the architecture and the compiler, are 
introduced. 

3.1 Architecture Aspe cts 

Several PIM architectures integrate processors 
and memory on a single chip.  

(a) Vector Processors in DRAM  

The VIRAM (Vector IRAM) [22] combines 
vector units , a scalar processor, and DRAM on a 
single chip. The VIRAM processor consists of an 
in-order dual-issue superscalar processor and a 
first-level cache, tightly integrated with a vector 
execution unit and multiple pipelines. The memory 
system includes 96MB of DRAM, connected to 
the scalar and vector units via a crossbar. If 16 
add-multiply units are used and are clocked at 
500MHz, VIRAM can run Linpack at 8 GFLOPS, 
five time s faster than a Cray T-90. Other bench-
marks, such as multimedia applications, are re-
ported to run well on VIRAM architecture.  

(b) Logic-in-Memory  

Several investigations on integrating logic with 
memory have been undertaken. C•RAM (compu-
tation RAM) [6] uses  special logic in DRAM as a n 
MPEG encoder. SmartSIMM [15] uses integrated 
logics to overcome the I/O Bus bottleneck. Among 
these logic-in-memory architectures, Active Page 
[21] is the most general-purpose scheme. Logically, 
an Active Page consists of a page of data and a set 
of associated functions that operate on the data set. 
Physically, this kind of PIM chip, called 
RADRAM, carries several Active Pages . Each 
512KB memory block is associated with an LE 
(Logic Element) which is built by FPGAs. The 
logic function of an Active Page can be pro-
grammed when the application is compiled by a 



special compiler that can hardwire the FPGA logic 
at compile-time. The cost of fabricating a 
RADRAM chip is not high because its  logic part is 
FPGA rather than complicated processors. Con-
ceptually, FPGA can be regarded as a 
re-configurable processor and RADRAMs can be 
used for several applications if LEs are 
re-configured. In RADRAM, only simple func-
tions can be implemented by an Active Page, since 
only 1K transistors are present on each LE and 
these LEs are in FPGA format. The implemented 
functions are simple set operations, such as array 
insert/delete, data search, basic arithmetic  compu-
tation, table fill, index comparison and data 
gather/scatter. According to [21], these operations 
are accelerated up to 1000 times the speed of a 
simple scalar RISC running at 1GHz with a 
non-pipelined memory system.  

(c) Processing-in-Memory  

Some investigations on high-speed computation 
integrate multiple processor cores with memory. 
EXECUBE [8], unlike VIRAM that is mem-
ory-centric , is a processor-centric architecture. 
EXECUBE integrates sixteen 32KB memory 
banks and eight CPUs with a four-link DMA on 
the center of the chip. Like the Cray T series on a 
single chip , EXECUBE can perform highly para l-
lel computations. However, the biggest challenge 
comes from implementation. The first, current 
technology only supports a small memory bank in 
the above architecture because several processors 
on a chip occupy too much area and the die area is 
not large enough to accommodate more memory. 
The second  challenge is the wiring for connectivity, 
which might occupy a large area and limit the 
speed of the processor.  

3.2 Compiler Aspect 

Some investigations of compiler have been 
studied to utilize the benefits of PIM architectures. 
Yelick et al. [12] designed a VIRAM compiler for 
Vector-IRAM systems based on the vectorizing 
compiler of the Cray system. They modified the 
code generator of the original CRAY compiler to 
generate both MIPS scalar codes and vector codes 
to fit the architectural definition of VIRAM. Barua 
et al. [2] proposed a compiler, called Maps, to 
generate codes for the Raw chip that is composed 
of a set of tiles which integrate processor and 
memory. The main contributions of their work are  
the distribution of data across several tiles and 
disambiguating memory access to specific tiles. 
Using more tiles can increase more memory access 
paralle lism. Disambiguating memory access can 

enables the compiler to manage the communica-
tion between tiles efficiently. In addition to the 
above systems, Gupta et al. [27]  developed a com-
piler that allows different cache line sizes for 
various portions of the program. Moritz et al. [20] 
designed a framework, called Fle xCache, to cache 
data at compile-time. This framework is based on 
a flexible software platform, with the possibility of 
adding hardware resources if required. 

4. Methodology 

Most current parallelizing compilers focus on 
the transformation of loops to execute all or some 
iterations concurrently, in a so-called itera-
tion-based approach. This approach is suited to 
homogeneous  and tightly coupled multi-processor 
systems. However, it has an obvious disadvantage 
for heterogeneous multi-processor platforms  be-
cause iterations have similar behavior but the ca-
pabilities of heterogeneous processors are diverse. 
Therefore, a different approach is adopted here, 
using the statements in a loop as a basic analysis 
unit, called statement-based approach, to develop 
the SAGE system. 

SAGE (Statement- Analysis- Grouping- Evalua-
tion)  is an automatic parallelizing compiler, that 
partitions and schedules an original program to 
exploit the specialties of the host and the me mory 
processor. At first, the source program is  split into 
blocks of statements according to dependence re-
lations. Then, the Weight Partition Dependence 
Graph (WPG)  is generated, and the weight of each 
block is evaluated. Finally, the blocks are dis-
patched to either the host or the memory proces-
sors, according to which processor is more suitable 
for executing the block. The major difference be-
tween SAGE and other parallelizing systems is 
that it uses statement rather than iteration  as the 
basic unit of analysis. This approach can fully ex-
ploit the characteristics of statements in a program 
and dispatch the most suitable tasks to the host and 
the memory processors. 

 

 

 

 

 

 

 

Table 2. A simple fully parallelizable program. 

Program Weight 
for P.Host 

Weight for 
P.Mem 

  DO I = 1 to N 
S1:   A= A mod B 
S2:   C= D[I] + E 
S3:   F= G[I] + H[I] 
  ENDDO 

 
3 
5 
6 

 
6 
1 
2 

 



Table 2 presents a simple example to demo n-
strate the advantages of statement-based paralleli-
zation. The program is fully parallelizable and can 
be partitioned into statements or iterations. The 
table lists the assumed statement weights for the 
P.Host and P.Mem. Table 3 shows five paralleliza-
tion cases in Table 2 and their execution times. 
The first two involve executing the program solely 
on P.Host and P.Mem, respectively. Case 3 paral-
lelizes the program using conventional paralleliz-
ing compilers, such as SUIF [8] or Polaris  [3] to 
identify the parallelizable loops and dispatch them 
for execution on P.Host and P.Mem. This approach 
only achieves good speedup for processors with 
homogeneous capabilities (including memory ac-
cess latency, computing power, and so on). In case 
4, the iterations are dispatched to the processors 
according to the processors' capabilities, but the 
compiler does not consider the discrepancies 
among processors in executing statements. Case 5 
uses  the statement-based analysis approach (i.e., 
optimized by SAGE). This approach outperforms 
all the others since it dispatches statements to 
P.Host and P.Mem by accounting for the charac-
teristics of statements and the capabilities of proc-
essors, motivating the development of the SAGE 
system for asymmetric multiprocessor environ-
ments. Figure 2 illustrates the organization of the 
SAGE system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Statement Splitting and WPG Construction 

Statement Splitting splits the dependence graph 
by Node Partition Π  in [18]. WPG Construction 
constructs the Weighted Partition Dependence 
Graph (WPG), to be used in the subs equent stages 
of Weight Evaluation, Wavefront Generation and 
Schedule Determination. 

The definitions relevant to Statement Splitting 
are introduced as below. 

Definition 1 (Loop Denotation) [18] 

   A loop is denoted by  L = (I1 , I2 , … . In )( S1 , 
S2 , … . Sk ), where Ij, 1=j=n, is a loop index, and Sd, 
1=d=k , is a body statement which may be an as-
signment statement or another loop. ¦  

Definition 2 (Node PartitionΠ ) [18] 

For a given loop L on the dependence graph G, 
we define a node partition Π of { S1 , S2 , … . Sd} 
in such a way that Sk and Sl , 1=k=d, 1=l=d, k≠  l , 
are in the same block (cell) of partition if and only 
if Sk ∆ Sl and Sl ∆ Sk where ∆ is an indirect data 
dependence relation.  

On the partition Π={π1,π2 ,… ,πn}, we define 
partial ordering relations α, α^, and αo as follows.  

For i ≠  j:  

1) πi α πj  iff there exist Sk ∈ πi and Sl ∈ πj 
such that Sk δ Sl , where δ is the true de-
pendence relation .  

2) πi α^πj iff there exist Sk ∈ πi and Sl ∈ πj such 
that Sk δ̂  Sl, where δ^ is the anti depend-
ence relation. 

3) πi α
oπj iff there exist Sk ∈ πi and Sl ∈ πj such 

that Sk δo Sl, where δo is the output depend-
ence relation.                        ¦ 
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Fig. 2. The sequence of compiling stages in SAGE.  

Table 3. Five parallelizing cases and their execution 

times. 

Case Description Execution Time 

1 
Host processor operates 
solely 

Latency = [PH(S1)+ PH(S2)+
PH(S3)]*# of iterations = 
(3+5+6)N = 14 N 

2 
Memory processor oper-
ates solely 

Latency = [PM(S1)+ 
PM(S2)+ PM(S3)]* # of itera-
tions = (6+1+2)N = 9 N 

3 
Host and memory proces-
sors cooperate in symmet-
ric workload  

Latency = max((3+5+6)* 
0.5N, (6+2+1)* 0.5 N) = 7 N

4 

Host and memory proces-
sors cooperate in asym-
metric workload by paral-
lelizing iteration space of 
the loop  

Dispatch workload in propor-
tion to the capability ratio of 
PH and PM obtained from 
Case 1 and Case2: PH: PM = 
9:14 Latency=14* (9/23)N= 
5.48 N 

5 

Host and memory proces-
sors cooperate in asy m-
metric workload by SAGE 
optimization  

Latency = max (PH(S1) * N, 
PM(S2,S3)*N) = 3 N  (Here 
S1 is more suitable for P.Host, 
but S2 and S3 are more suit -



Based on the definition, the statements form a 
block (cell) of partition Π  if and only if there exist 
a  directed dependence cycle. Two blocks have 
true/anti/output dependence if and only if there 
exist a true/anti/output dependence between two 
statements , one for each block. 

Definition 3  (Weighted Partition Dependence 
Graph)[9][10] 

Given a node partition Π  defined in Definition 2, 
we define a weighted partition dependence graph 
WPG(B,E)  as follows. For each πi ∈Π, there is a 
corresponding node bi 〈 Ii , S i , Wi , Oi 〉 ∈  B, where 
Ii denotes the loop index; Si represents the body 
statements ; Wi is the weight of node i in the form 
of Wi (PH,PM) with PH and PM be the weights of 
P.Host and P.Mem respectively; and Oi is the exe-
cution order of this node. There is an edge eij∈E 
from bi to bj if bi and bj have dependence relations 
α, α^, and αo defined in Definition 1. These de-
pendence relations are respectively denoted by 

, →  →anti , and →O . 

Based on these three definitions, we propose a 
Statement Splitting algorithm (Algorithm 1) to 
partition the loops:  

 

 

 

 

 

 

 

 

 

 

4.2 Weight Evaluation 

Two approaches to evluating weight can be 
taken. One is to predict the execution time of 
programs by profiling the dominant parts [28].  The 
other considers the operations in a statement and 
estimates the program execution time by looking 
up a statistical operations table [24]. The former 
method may be more accurate, but the predicted 
result cannot be reused; the latter can determine 

statements for suitable processors but the 
estimated program execution time is not 
sufficiently accurate. Hence, the Self-Patch Weight 
Evaluation scheme was designed to combine the 
benefits of both approaches. For a detailed 
description of this scheme, please refer to [4] 

4.3 Wavefront Generation and Schedule 
Determination 

This section presents an algorithm for schedul-
ing P.Host and P.Mem.  In our previous work [9, 
10], a method to obtain a load-balanced schedule 
for P.Host and P.Mem was proposed. However, the 
method has two weaknesses . First, it concentrates 
more on balancing the workload of processors but 
less on the capability difference between P.Host 
and P.Mem. Second, the dispatch mechanism re-
quires large time complexity. In this paper, a new 
scheduling mechanism has been devised to solve 
these two problems. In solving the first problem, 
the new mechanism classifies the blocks into two 
sets , according to the weight difference between 
P.Host and P.Mem. Then, suitable blocks of each 
set are dispatched to P.Host and P.Mem, respec-
tively. A seesawing dispatch  mechanism is devised 
to reduce the time comple xity. The weights  of the 
blocks in partition Π are  computed first, and the 
execution order of each block is then determined 
according to the dependence relations between the 
blocks. Blocks with the same execution order are 
assigned to a wavefront. Wavefronts are executed 
in sequence, but the blocks in the same wavefront 
will be executed simultaneously, scheduled to 
P.Host and P.Mem according to their weights.  

Given a weighted partition dependence graph 
WPG=(B,E) , in which the weight and the order of 
the blocks has not been determined, the scheduling 
algorithm involves the following steps . 

Step 1: Initialize the execution order of each block 
and determine the P.Host weight and 
P.Mem weight of each block by the weight 
evaluation mechanism mentioned earlier.  

Step 2: Determine the execution order (wavefront) 
of each block by the following rule: A 
block's execution order equals the maxi-
mum execution order of all of its succes-
sors plus one. 

Step 3: Set wavefront number j =1. Perform the 
following actions until j = maximum exe-
cution order: 

3.1 Store the blocks whose execution order 

Algorithm 1. (Statement Splitting Algorithm) 

Given a loop L = (I1, I2, … . Id) ( S1, S2, … . Sd)  
Step 1: Construct dependence Graph G by 

analyzing subscript expressions and 
index pattern. 

Step 2: Establish a node partition Π on G as 
defined in Definition 2. If there are 
large blocks caused from control de-
pendence relations, convert control 
dependence into data dependence first 
[16], and then part ition the depend-
ence graph. 

Step 3: On the partition Π, establish a 
weighted partition dependence graph 
WPG(B,E) defined in Definition 3. 



equals j in the set wf_tmp. 

3.2 Divide wf_tmp into two sets , ph_tmp  and 
pm_tmp. The blocks with P.Host weight = 
P.Mem weight are stored in ph_tmp . The 
other blocks (i.e., P.Mem weight < P.Host 
weight) are put into pm_tmp . Restated, the 
blocks in ph_tmp  perform better if exe-
cuted on P.Host.  

3.3 Sort ph_tmp  and pm_tmp  in order of de-
creasing P.Host weight and P.Mem weight, 
respectively. Set token = P.Host. 

3.4 Perform the seesawing dispatch mecha-
nism: 

3.4.1 If token = P.Host, perform Step 3.4.1.1, 
else perform Step 3.4.1.2 

3.4.1.1 Put the first block (with largest 
P.Host weight) from ph_tmp into 
set ph_sch. If ph_tmp  is empty, put 
the largest block from pm_tmp into 
ph_sch .  

3.4.1.2 Put the first block (with largest 
P.Mem weight) from pm_tmp  into 
set pm_sch. If pm_tmp  is empty, 
put the largest block from ph_tmp  
into pm_sch. 

3.4.2 If the total weight of P.Host in ph_sch 
= the total weight of P.Mem in 
pm_sch, set token = P.Mem. (This 
means P.Mem requires more blocks 
to achieve load-balance), else set to-
ken  = P.Host. 

3.4.3 If both ph_tmp and pm_tmp are 
empty, then generate wavefront Wfj 
={ph_sch , pm_sch}; insert a barrier 
to synchronize P.Host and P.Mem, 
and set j = j + 1; else return to Step 
3.4.1. 

4.4 Example 

A simple synthetic program, shown in Fig. 3, il-
lustrates the processes of SAGE. In the Statement 
Splitting stage, the loops are partitioned into seven 
separate loops (by Algorithm 1). Figure 4 presents 
the results and the blocks associated with these 
loops. Figure 5 shows the WPG graph obtained by 
applying the WPG Construction . The WPG graph 
consists  of blocks (nodes) and edges. A block has 
four attributes: I (the set of loop indices), S (the set 
of statements in the loop), W (the weights of 

P.Host and P.Mem), and O (the execution order of 
the block). An edge specifies the dependence rela-
tion between two connected blocks, as defined in 
Definition 3. Using the Weight Evaluation, the 
P.Host weight and the P.Mem weight in each block 
can be determined, as shown in Fig. 6. Based on 
the P.Host weight, the P.Mem weight, and the de-
pendence relations between the blocks, the execu-
tion schedule can be generated using Wavefront 
Generation and Schedule Determination  in Algo-
rithm 2. The seven blocks are scheduled into three 
wavefronts, as shown in Fig. 7. In the first wave-
front, block b1 is dispatched to P.Host and blocks 
b2, b3, and b6 are dispatched to P.Mem. In the 
second wavefront, block b7 is dispatched to P.Host 
and block b4 is dispatched to P.Mem. In the third 
wavefront, only one block b5 is present, and is 
dispatched to P.Host because its P.Host weight is 
less than P.Mem weight. Between two contiguous 
wavefronts, a synchronization barrier is required. 
Figure 8 presents those results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Block  b1 
DO I = 1 TO N  

DO J = 1 TO M 
S1:   A(I,J) = B(I,J)+C(I,J) 
S2:   A(I,J) = A(I-1,J)+A(I+1,J)+C  
S3:   X = A(I,J)+2 
S4:   A(I,J+1)=X*7 

ENDDO 
ENDDO  
 
// Block  b2 
DO I = 1 TO N  

DO J = 1 TO M 
S5:   D(I,J) = 2*D(I,J)+3  

ENDDO 
ENDDO  
 
// Block  b3 
DO I = 1 TO N  

DO J = 1 TO M 
S6:   E(I,J) = 2*E(I,J)+2 

ENDDO 
ENDDO  
 
// Block  b4 
DO J = 1 TO N  

DO I = 1 TO M  
S7:   F(I,J) = E(I,J)*F(I,J)       

ENDDO 
ENDDO  
 

// Block b5 
DO J = 1 TO N  

DO I = 1 TO M  
S8:   F(I,J+1) = F(I,J)+5       

ENDDO 
ENDDO 
 
// Block b6 
DO J = 1 TO N  

DO I = 1 TO M  
S9:   G(I,J) = G(I-1,J)*G(I,J-1)   

ENDDO 
ENDDO 
 
// Block b7 
DO I = 1 TO N  

DO J = 1 TO M 
S10:   Z = A(I,J)+A(I,J-1) 
S11:   A(I,J) = Z*C 

ENDDO 
ENDDO 

 

Fig. 4. Resulting program of Fig. 3 after Statement 
Splitting. 

Fig.3. A simple program with three loops. 
 

// Loop 1  
 
DO I = 1 TO N 

DO J = 1 TO M 
S1:   A(I,J) = B(I,J)+C(I,J) 
S2:   A(I,J) = A(I-1,J)+A(I+1,J)+C  
S3:   X = A(I,J)+2 
S4:   A(I,J+1)=X*7 
S5:   D(I,J) = 2*D(I,J)+3  
S6:   E(I,J) = 2*E(I,J)+2  

ENDDO 
ENDDO 
 

 

// Loop 2  
 
DO J = 1 TO N  

DO I = 1 TO M 
S7:   F(I,J) = E(I,J)*F(I,J) 
S8:   F(I,J+1) = F(I,J)+5  
S9:   G(I,J) = G(I-1,J)*G(I,J-1) 

ENDDO 
ENDDO 
 
// Loop 3  
 
DO I = 1 TO N  

DO J = 1 TO M  
S10:   Z = A(I,J)+A(I,J-1) 
S11:   A(I,J) = Z*C 

ENDDO 
ENDDO 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental Results 

The code generated by our SAGE system is tar-
geted on the FlexRAM simulator developed by 
IA-COMA Lab. in UIUC [13]. Derived from 
MINT [26], this simulator models the environment 
of a dynamic superscalar multiprocessor and the 
detailed memory behavior cycle by cycle. Table 1 
lists the major architectural parameters (Section 
2.1). In this experiment, only one P.Mem processor 
is spawned to reflect the benefits of the memory 
processor. The applications evaluated include five 
benchmarks - swim  and tomcatv from SPEC95, 
strmm from BLAS3, ep from the serial version of 
NAS and fft from [23] . This simulator is executed 
on an SGI Origin200, using a MIPSPro Fortran 
compiler with the optimizing option “-O2” to com-
pile these five benchmarks. According to the 
claims made for the MIPSPro compiler, option 
“-O2” provides several instruction level optimiza-
tions, such as  scalar replacement, tiling, constant 
propagation, dead code elimination, and others . 
Table 4 demonstrates the results  of the experiment, 
in which "P.Host only" denotes that the applica-
tions are executed on P.Host alone; "P.Mem only" 
denotes that the applications are executed on 
P.Mem alone, and “SAGE opt” indicates that the 
applications are transformed by SAGE for execu-
tion on one P.Host and one P.Mem simultaneously. 
"Speedup" is obtained by dividing "P.Host only " 
by "SAGE opt". 
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Fig. 5. WPG graph of the program in Fig. 3 after 
WPG Construction. 
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Fig. 6. Resulting WPG graph of Fig. 5 after Weight 
Evaluation. 
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Fig. 7. The WPG graph in Fig. 6 after Wavefront Ge n-
eration. 
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Fig. 8. The execution schedule for the P.Host and 
P.Mem of Fig. 3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 4, swim has the best speedup because it 
can be partitioned into many blocks for scheduling 
to P.Host and P.Mem, according to the characteris-
tics of blocks and processors. Restated, swim has 
more  potential parallelism.  In contrast, strmm, 
tomcatv, fft , and ep are intrinsically sequential. 
They can only be partitioned into several large 
blocks, preventing the generation of load-balance 
schedules. Therefore, even SAGE can not greatly 
improve the their performance.  

Figure 9 depicts the experimental results with 
reference to the four major parts  - useful (cycles 
for executing useful instructions), sync (cycles for 
synchronizing with memory  processors ), memory 
(cycles for memory access, including the time re-
quired for cache coherence) and misc (cycles for 
other hazards). Except fft, the "useful" parts of the 
benchmarks in the "P.Host only" mode are smaller 

than those in the "P.Mem only" mode and the 
"memory" parts in the "P.Host only" mode are 
larger than those in the "P.Mem only" mode. This 
observation explains the fact that the host proces-
sor computes more powerfully, wh ile the memory 
processor has shorter memory access latency, as 
mentioned above. Additionally, fft  cannot get 
benefit from memory access in "P.Mem only" 
mode because its data are too few, such that all 
data can be cached in the second level cache of 
P.Host. On the other hand, the "useful" and "mem-
ory" parts in the "SAGE opt" mode are signif i-
cantly reduced since swim  can be effectively part i-
tioned and scheduled by SAGE. However, strmm, 
tomcatv  and fft cannot be partitioned into many 
blocks; hence, synchronization time is required 
and their execution times are not greatly reduced 
by SAGE. Notably, synchronization time i s  re-
quired when P.Host and P.Mem execute the pro-
gram simu ltaneously, but do not finish the execu-
tion at the same time. In the circumstances, one 
processor must wait for the other. The performance 
of the ep benchmark cannot be improved greatly 
even if P.Host and P.Mem cooperate to execute 
this benchmark in "SAGE opt" mode since the 
memory access time  is rather small. 

6. Conclusion 

This study proposes an automatic  source- to- 
source parallelization system, called SAGE, for a  
new class of high-performance SoC architecture, 
Processor-in-Memory, which consists of a host 
processor and a memory processor. The SAGE 
system partitions source codes into blocks by 
statement splitting; estimates the weight (execu-
tion time) of each block, and then schedules each 
block to the most suitable processor for execution. 
This study refined our earlier work by devising a 
new scheduling mechanism and integrating a new 
weight evaluation mechanism. Five real bench-
marks, swim, tomcatv, strmm, ep, and fft were ex-
perimentally considered to evaluate the effects of 
SAGE system. The simulator used here is a PIM 
architecture that consists of one P.Host and one 
P.Mem, derived from FlexRAM. The obtained 
speedups are from 1.01 to 1.96, depending on the 
characteristics of applications and their potential 
parallelism. The techniques proposed here can be 
extended to run on DIVA, EXECUBE and 
FlexRAM, with several memory chips, each of 
which has several memory processors.  
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Fig. 9. The execution times of five benchmarks by P.Host 
only, P.Mem only, and optimized by SAGE. 

Table 4. The execution cycles of five benchmarks.  
 

Benchm
ark 

P.Host only P.Mem 
only 

SAGE opt Speed
up 

swim 228289321 355801581 116669760 1.96 

strmm 233969505 356808711 204417723 1.14 

tomcatv 380235321 455758516 375200330 1.01 

fft 117998621 403954552 101841407 1.15 

ep 103044816 250925512 86924945 1.19 
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