
 1

Data Placement of a RAID Based on Zone Disks

Yin-Fu Huang and Chia-Pin Chen
Institute of Computer Science and Information Engineering

National Yunlin University of Science and Technology
Email: huangyf@el.yuntech.edu.tw

Abstract

Due to the characteristics of MZR disks,

such as variable transfer rates and capacities in
different zones, the file placement has great
effects on the system performance. First,
according to the physical zones of zone disks,
we can partition a disk array into several regions.
For each region, we give a range of maximum
number of data striping respectively. Then
considering the factors such as file
characteristics and popularity levels, the
placement constraints for files are presented.
According to the constraints and current disk
array configuration, a file placement algorithm is
proposed to allocate appropriate disk locations
for files. Through the simulation, we found that
the dropping rate of real-time file requests in our
method is explicitly less than those in the other
two placement strategies. Furthermore, we also
observed that more available disk spaces in
high-bandwidth regions, after using our method,
make our method more elastic than the PVW
placement in the future when placing high QoS
files such as MPEG2.

Keywords: zone disk; data placement; disk array;
multimedia data

1 Introduction

The developments of the multimedia
technology grow rapidly in recent years. Among
them, several video compression techniques
such as MPEG1, MPEG2, and MPEG4 offer
variety quality of services for users. For different
video applications, a video server must have
huge storage to store these videos and also
enable to transfer them in real-time. To achieve
the goals mentioned above, the disk zoning
technique has been widely used for increasing
disk capacity and bandwidth by manufacturers
[8]. The basic idea is to partition a disk surface
into several regions, termed zones such that
outer zones constituted by longer tracks contain
more data than inner zones. Then, given a fixed
rotation speed, a zone disk may have variable
bandwidths, depending on which zone a disk
head is presently positioning on. By the way, the
total bandwidth and capacity of a system can be
increased by using the multi-disk technique [2, 6,

7].
In the past, some researches considered

increasing the average transfer rate of a zone
disk by rearranging zone layout in a logical
manner [9]. Because this manner will prune
some zones with a lower transfer rate, it wastes
disk spaces. Some studies focused on data layout
[1, 3], and they adopted the two-pair way to
store files in outer tracks and inner tracks. Its
drawback is that it incurs delay when users
access files located at zones with a low transfer
rate. Some researchers proposed the concepts of
popular regions [4, 5, 10] where a disk is divided
into two regions, such as hot region and cold
region. The files with more popular will be
placed in hot region, and the files less accessed
will be placed in cold region. In the paper, an
efficient file placement algorithm for a
multi-zone-recording disk array is proposed.
Since each file has its own characteristic, they
are classified into four types. Besides, owing to
different transfer rates of zones within a disk, we
consider placement constraints for different file
types when placing files on a disk array.
According to the placement constraints and
current disk array configuration, appropriate disk
locations for files can be allocated in the
proposed file placement algorithm.

The remainder of the paper is organized as
follows. In Section 2, we describe the system
model used in the paper. There some
assumptions and file classifications are made. In
Section 3, we formalize placement constraints
based on file characteristics, and then propose
the file placement algorithm. In Section 4, a
simulation model is proposed, and several
experiments are conducted to compare different
placement strategies. Finally, we make
conclusions and future research directions in
Section 5.

2 System Model

The system model investigated here is
illustrated as shown in Fig. 1. A server provides
services to the clients that are connected with the
server through a high-speed network, such as an
ATM switch, a fast Ethernet, or an optical fiber,
etc. Within the server system, a disk array with
mass storage is connected with a high-speed
system bus, such as an SCSI interface. The disk

 2

array used here is composed of several zone
disks. When a client issues a request for a file
access, the server must transfer the file with the
service rate demanded by the client during the
transmission time.

high speed
network

disk arrayserver

high speed
bus

client

client
:

Fig. 1 System model

2.1 The Assumptions

In the model, we have made some
assumptions for the server end, client ends, and
file allocation, respectively. For the server end,
since the problem addressed here is the file
placement in a disk array, no cache or even disk
scheduling is considered. However the server
still has the maximum number of requests served
in a service round owing to the bound disk
bandwidths. For client ends, buffer availability is
not considered here. For file allocation, we
assume that a disk array is composed of several
MZR (i.e., multi-zone-recording) disks with the
following properties. Firstly, the block size
within the zone disks is fixed, so the block
number of outer tracks is more than that of inner
tracks. Secondly, to reduce high latency and save
storage space, we would partition the surface of
a disk into several regions (i.e., logical zones). In
other words, each logical zone in the model is
supposed to contain the same number of physical
zones. Thirdly, although a file could be striped
into separated zone disks, it should be
continuously allocated in a single zone disk.
Finally the bandwidth of the high-speed bus
connected to the disk array is higher than the
total bandwidths of zone disks in the disk array.

2.2 File Classification

The files stored in the disk array can be
classified into four types, according to their
characteristics. They are as follows:
(1) Video files: They can be further classified

into several standard types such as MPEG1,
MPEG2, and MPEG4, etc. Each standard
type has its own quality of services.
However their common property is to
require real-time transmission.

(2) Wave files: Similarly, audio files can be also
classified into several standard types
according to their compression rates.
Although their sizes are far smaller than
those of video files in general, they still
require real-time transmission.

(3) Image files: Although they have different
sizes according to different image

compressing techniques, they are not
necessarily transmitted in real-time. Maybe
the only considerations are response time
(i.e., initial latency) and total completion
time.

(4) Text files and other types of files: Although
they doe not belong to the first three types
mentioned before, their properties are more
similar to those of image files, owing to not
requiring real-time transmission.

As a matter of fact, the major consideration we
concern in the system is the requirement of
real-time transmission of files. In Section 3, we
will take into account the real-time requirement
when placing files in the disk array.

2.3 Problem Definition

Since a zone disk has different transfer
rates in different zones, the file placement has a
close relationship with file access. In other
words, if a file required with high quality of
services is placed in a zone with the lower
transfer rate, clients may not be satisfied with
services provided by the system. In order to
break through the disk bottleneck, the RAID
framework is employed in our model to increase
the system bandwidth. The merit of using the
RAID is by virtue of the file-striping technology.
However a file is not necessarily striped into all
zone disks in the disk array. Here the
consideration that we concern is how to place
files efficiently in the disk array to meet the
quality of services according to the available
zones in the zone disks and the appropriate
striping number across the zone disks.

3 File Placements on an MZR Disk
Array

To place files on a disk array efficiently,

firstly we have placement constraints for
different requirements such as file characteristics
and popularity levels. Then according to the
placement constraints and current disk array
configuration, a file placement algorithm is
proposed to allocate appropriate disk locations
for files.

3.1 Symbols Used to Define Placement
Constraints

According to the file characteristics as
mentioned in Section 2, we have different
placement constraints for real-time and
non-real-time transmissions. A real-time file
must be transmitted in a fixed rate to strictly
meet user demands in the quality of services,
whereas a non-real-time file does not need to
meet the demands as a real-time file, but could

 3

require being both responsive and transmitted
completely in a finite time. Here the symbols
used to define the placement constraints are
shown in Table 1.

Table 1 Symbols used to define the placement
constraints

Symbols Illustrations Units

K No. of disks in a disk array

N No. of regions in a disk array

Rmax
Max. no. of requests serviced
in a service round

Pi Popularity level of file i

Displayi Display rate of file i MB/second

Regionn Region no.

α Ratio of the initial-data
portion

Ti
time to transfer the
initial-data portion second

Tf
time to transfer the follow-up
data portion second

Si Size of file i MB

3.1.1 Placement Constraints for Real-time Files

To meet the quality of services for a
real-time file, its display rate must less than or
equal to the bandwidth of the region storing the
file. Moreover, since the required bandwidth for
real-time files increases rapidly, a single disk is
no longer satisfactory to them. Thus, we use
data-striping techniques to store them across a
multi-disk array. Basically the placement
constraints to store a real-time file can be
formulated as follows:

Displayi ≤ Bandwidth(Regionn)×
Striping_no(Regionn)

In a client-server system, we can not

exclude that more than one client access a file at
the same time. Not considering the caching at
the server end, the file must be transferred at a
higher bandwidth. In other words, a file with
more popularity will need to allocate a region
with higher bandwidth for it. Here the popularity
profile of files can be made according to
accessed records in the past. The popularity level
for a file can be expressed as follows:

requests ofnumber total
i file accessing requests ofnumber

iP =

Due to the finite bandwidth in the system, we
have an upper bound Rmax of requests serviced in
a service round. According to the popularity
level for a file, the maximum number of requests

to access the same file in a service round can be
estimated as  maxi RP × . Thus the placement
constraints to store a real-time file can be
modified as follows when considering more than
one client accessing it simultaneously:

 
(1))n

nmaxii

Region o(Striping_n
)Region Bandwidth(RPDisplay

×
≤××

3.1.2 Placement Constraints for Non-real-time
Files

Unlike the characteristics of real-time files,
non-real-time files could require being both
responsive and transmitted completely in a finite
time, thereby adopting another type of placement
constraints. For a non-real-time file being
responsive in a finite time Ti, it can be viewed as
two portions such as initial data and follow-up
data. The initial portion of a non-real-time file
should be transmitted as soon as possible to meet
the time constraint Ti. On the other hand,
although the follow-up portion does not require
being transmitted in a fixed rate, but it should be
done completely in a finite time Tf. Thus, the
placement constraints to store the initial portion
of a non-real-time file can be formulated as
follows:

(2))nRegion o(Striping_n

)nRegion Bandwidth(
iT
αiS

×≤
×

Accordingly, the placement constraints to store
the follow-up portion of a non-real-time file can
be formulated as follows:

(3))no(RegionStriping_n

)nRegionBandwidth(
fT

α)(1iS
×≤

−×

In general, since a non-real-time file is more
private than a real-time file, we do not consider
its popularity level. Besides, when we try to
place a non-real-time file into the disk array,
both placement constraints must be met.

3.2 File Placement Algorithm

As shown in Fig. 2, the MZR disk array
used to place files in our model has K zone disks
and N regions for each disk. To enable storing
huge-size files in the disk array, we arrange that
the outer regions (i.e., with smaller IDs) have
more striping number than the inner regions (i.e.,
with larger IDs) when placing files. Initially, the
default maximal striping number of Region n is

 4

assigned as 





n2
K . According to the placement

constraints mentioned above and current disk
array configuration, the file placement algorithm
will allocate appropriate disk locations for files
to meet the client requirements during file
presentations. Basically, a file, regardless of
real-time or non-real-time, should be allocated
totally within a region.

0

1

N -1

1 2 K

R eg io n
ID

D isk
ID 





2
K

S trip in g nu m be r
ran g e

1 〜

1 〜







02
K







12
K

1〜






−12 N

K

Fig. 2 Layout of an MZR disk array

The basic concepts of our file placement

algorithm can be described as follows. To place a
file, we must determine its location in the disk
array; i.e., its resident region ID and even
striping number. Initially, as mentioned above,
each region has a default maximal striping
number. First, we find out all candidate pairs
(region ID, striping no.) capable of transmitting
the file, based on the placement constraints
mentioned in Section 3.1. Then, we will select
an appropriate pair from them, which has
sufficient spaces in each striping disk to store the
file. If, unfortunately, no pairs among the
candidates have sufficient spaces in each striping
disk in the current round, we mark the outermost
region with K striping (i.e., the maximum
bandwidth) “unusable” and double the default
maximal striping of other inner regions. Then, as
the procedure mentioned above, we repeat
finding candidate pairs and selecting an
appropriate pair in the next round. The
procedure is repeated until file placement is
successful or all the regions are marked
“unusable”. If we cannot find an appropriate
disk location for the file during the allocation
procedure, it could be the case such that
although the total free spaces in a region are
sufficient to store the file, at least one striping
disk have no sufficient free spaces. Thus, we will
try to migrate resident files in the region to make
all striping disks enable to store the file. Here the
file to be stored will have maximal data striping
K to avoid violating placement constraints.
Besides we have two claims for file migration;

that is 1) the data striping of migrated files must
be kept the same after migration, and 2) file
migration is only done within a region. The file
placement algorithm for an MZR disk array is
formally given as follows:

File_Placement_Algorithm
Step 1 For a file to be stored, repeat from Step 2

to Step 5 until file placement is
successful or all the regions are marked
“unusable”.

Step 2 If its file type is real-time,
then find all candidate pairs (region ID,

striping no.) capable of
transmitting it, based on placement
constraint (1).

else find all candidate pairs capable of
transmitting it, based on placement
constraint (2) and (3).

Step 3 Sort all the candidate pairs in an
ascending order of transfer rates.

Step 4 Repeat from Step 4.1 to Step 4.2 until a
candidate pair is selected to store the file
or no candidate pairs exist.

Step 4.1 Remove the first candidate pair
from the sorted pairs.

Step 4.2 If the removed pair has no
sufficient spaces in each
striping disk to store the file,
then repeat from Step 4.
else place the file based on

the pair.
Step 5 If no candidate pairs exist, then

Step 5.1 Mark the outmost region
“unusable” and double the
default maximal striping of
other inner regions.

Step 5.2 Repeat from Step 1.
Step 6 If all the regions are marked “unusable”,

then
Step 6.1 For the file, compute the

required spaces on each disk
(i.e., Si/K).

Step 6.2 Scan all the regions from the
innermost one until file
migration is successful or all
the regions are scanned.

Step 6.2.1 If the scanned
region has
sufficient spaces
for the file, do
file migration.

Step 6.3 If file migration is successful,
then place the file onto the

region.
else drop the file.

File_Migration
/* Ds: disks with free spaces less than Si/K and

sorted in an ascending order of free sizes

 5

/* Dd: disks with free spaces more than Si/K and
 sorted in a descending order of free sizes

Step 1 For the scanned region, classify the disks
into two groups, such as Ds and Dd.

Step 2 Repeat from Step 3 to Step 6 until Ds is
empty (i.e., file migration is successful)
or file migration fails.

Step 3 Remove the first disk s from Ds.
Step 4 Repeat from Step 5 to Step 6 until all the

disks in Dd are scanned (i.e., file
migration fails) or file migration is
successful.

Step 5 Select the next disk d from Dd.
Step 6 Repeat from Step 6.1 to Step 6.2 until the

free spaces in disk s are more than Si/K or
all the files in disk s are scanned.

Step 6.1 Select a file with data striping
on disk s, not on disk d.

Step 6.2 If the file’s data striping size
on disk s is less than Size(the
free spaces in disk d − Si/K),
then do file migration.
else repeat from Step 6.

Here we use some examples to explain the

file placement algorithm. All relevant
information is shown in Table 2, 3, 4, 5, and 6.

Table 2 Parameters of the disk array
Zone # Size(MB) Transfer rate(MB/s)

0 5580 115.125
1 4860 104
2 4212 92.5
3 3728 78
4 2100 60

Table 3 System parameters

K 8
N 5

Rmax 600
α 0.1
Ti 0.5
Tf 5

Table 4 Free spaces of the disk array

Zone

Disk
1

Disk
2

Disk
3

Disk
4

Disk
5

Disk
6

Disk
7

Disk
8

0 56 29 42 53 300 251 77 450
1 200 401 512 171 212 110 100 112
2 251 211 245 132 145 167 197 118
3 140 220 300 211 220 450 190 220
4 221 115 249 224 654 109 247 129

Case 1:

Owing to the file type being real-time, it is
verified, using placement constraint (1), that the
required transfer rate must be more than
3.5(MB/s)*0.07*600. In Step 3, we sort all the
candidate pairs in an ascending order of transfer

rates as follows:
(2,2), (1,2), (0,2), (1,3), (0,3), (1,4), (0,4),
(0,5), (0,6), (0,7), (0,8)

In Step 4, since the striping number for the file is
2 as indicated in candidate pair (2,2), at least two
disks in region 2 must have 250MB free spaces
to store the file. However, candidate pair (2,2)
cannot meet the requirement. Then we find next
candidate pair (1,2) is the solution.

Table 5 Layout of the disk array
Region

ID
File
ID

Striping
no.

File
size

Used disks

…

…

…

…

0

…

…

…

…

1

…

…

…

…

2

…

…

…

…

3

1 6 1944 1,2,3,4,5,6
2 2 1000 2,6
3 5 500 1,2,6,7,8
4 3 600 2,6,8
5 1 450 8
6 8 300 All
7 3 600 3,4,5
8 4 800 1,3,7,8
9 2 900 1,7

10 4 400 3,4,5,7
11 4 100 1,2,3,4
12 5 2400 1,3,4,7,8
13 6 1200 2,3,4,5,7,8
14 7 700 1,2,3,4,5,6,8
15 1 36 2
16 1 12 3
17 1 47 4
18 1 267 6
19 1 222 5
20 1 23 7
21 1 141 8
22 5 500 1,2,6,7,8

4

23 3 600 2,6,8

Table 6 Characteristics of four file cases
Case QoS(MB/s) Type Popular

prob.
Size

1 3.5 Real 0.07 500
2 Null Non-real Null 100
3 7 Real 0.15 800
4 3 Real 0.02 1600

 6

Case 2:
Owing to the file type being non-real-time,

it is verified, using placement constraint (2) and
(3), that the required transfer rate must be more
than both 100*0.1/0.5(MB/s) and
100*0.9/5(MB/s). In Step 3, we sort all the
candidate pairs in an ascending order of transfer
rates as follows:

(4,1), (3,1), (2,1), (1,1), (0,1), (2,2), (1,2),
(0,2), (1,3), (0,3), (1,4), (0,4), (0,5), (0,6),
(0,7), (0,8)

In Step 4, since the striping number for the file is
1 as indicated in candidate pair (4,1), at least one
disk in region 4 must have 100MB free spaces to
store the file. Then we find candidate pair (4,1)
is the solution.

Case 3:

As similar to Case 1, the required transfer
rate of the file must be more than
7(MB/s)*0.15*600. In Step 3, we sort all the
candidate pairs in an ascending order of transfer
rates as (0,6), (0,7), (0,8). In Step 4, we find that
no candidate pairs have sufficient spaces in each
striping disk to store the file in this round. Then
we mark region 0 “unusable”, and try the next
round after doubling the default maximal
striping of other inner regions. Again, in Step 3,
we sort all the candidate pairs in an ascending
order of transfer rates as (1,7), (1,8). In Step 4,
since the striping number for the file is 7 as
indicated in candidate pair (1,7), at least seven
disks in region 1 must have 115MB free spaces
to store the file. However, candidate pair (1,7)
cannot meet the requirement. Then we find next
candidate pair (1,8) is the solution.

Case 4:

Although the required transfer rate of the
file is so low (i.e., 3(MB/s)*0.02*600) that any
candidate pair can meet the bandwidth
requirement, no candidate pairs have sufficient
spaces in each striping disk to store the file.
However, since total free spaces in region 4 are
sufficient to store the file, we will migrate its
resident files to make all striping disks enable to
store the file. Here the required spaces on each
disk are 1600/8MB, so the disks are classified
into two groups and sorted within each group as
follows:

Ds: Disk 6, Disk 2, Disk 8
Dd: Disk 5, Disk 3, Disk 7, Disk 4, Disk 1

Then we can migrate file 3 with striping size
100MB from Disk 6 to Disk 5, file 4 with
striping size 200MB from Disk 2 to Disk 5, and
file 22 with striping size 100MB from Disk 8 to
Disk 5. Finally, we can place the file onto region
4 with data striping 8.

4 Performance Evaluations

In this section, we propose a simulation
model and conduct several experiments to
validate the superiority of our method. The
simulation was done using the GPSS simulation
package developed by Minuteman Software, Inc.

4.1 Simulation Model

The simulation model is depicted in Fig. 3.
The request generator generates requests for file
accesses and submits them to the waiting queue
in an FCFS manner. Then the RAID server
fetches the requests from the waiting queue for
each service cycle, and dispatches disk
bandwidth according to the QoS of files
accessed. If the system can offer sufficient
bandwidth for a file, the transferring unit will
start to transfer it until completion; otherwise,
the system will check the file type. If the type is
real-time, the system will drop the request;
otherwise (i.e., a non-real-time file), the request
will be re-scheduled to the waiting queue and
waits for services in the next round. Besides, the
simulation parameters are shown in Table 7.

Table 7 Simulation parameters
Block size 128 KB

Spaces per disk 20 GB

Max. transfer rate per disk 115.125
MB/s

Min. transfer rate per disk 60 MB/s

System bus transfer rate 1600 MB/s

No. of disks 8

No. of regions 5

Max. no. of requests serviced
in a round

400

Ratio of the initial-data
portion

0.1

time to transfer the
initial-data portion

0.1 sec.

time to transfer the follow-up
data portion

5 sec.

QoS of MPEG1 files 1.14 Mbit/s

Length of MPEG1 files 5 ~ 60 min.

QoS of MPEG2 files 3 ~ 10 Mbit/s

Length of MPEG2 files 60 ~ 90 min.

QoS of wave files 0.17 Mbit/s

Length of wave files 3 ~ 8 min.

Size of non-real-time files 1 ~ 50 MB

 7

Request generator

Waiting queue RAID server

Sufficient
bandwidth ? Transferring unit

Real-time ? Drop request End
N Y

N

Y

Fig. 3 Simulation model

4.2 Experiments and Analyses

In order to validate the performance of our
method, we compare it with two placement
strategies. One is a random placement in which
all files are allocated in a random manner.
Another is the popular-based variable way
placement (PVW) [5] that divides the disk array
into three groups, and each group has a fixed
striping number. Then files are placed on the
disk array according to their popularity. In
addition, we also explore the influences resulted
from the ratios of real-time files and
non-real-time files, as shown in Table 8.

Table 8 Seven ratio cases
Case Ratio (real-time :

non-real-time)
MPEG2 :

MPEG1 : Wave
1 1 : 3 5 : 3 : 2

2 1 : 2 5 : 3 : 2

3 1 : 1 5 : 3 : 2

4 2 : 1 5 : 3 : 2

5 3 : 1 2 : 1 : 1

6 3 : 1 1 : 1 : 1

7 3 : 1 1 : 2 : 2

Experiment 1: Average no. of currently
serviced requests

In the experiment, we observe the average
number of currently serviced requests of three
placement strategies. We measure the number of
current requests per 50 seconds, and take their
average as shown in Fig. 4. We found that the
PVW placement and our method have better
performance than the random placement, since
both the PVW placement and our method
consider the characteristics of zone disks, and
efficiently make use of disk bandwidth.

0
100
200
300
400

1 2 3 4 5 6 7

Case

R
eq

ue
st

 n
um

be
r

PVW

Random

Ours

Fig. 4 Average number of currently serviced
requests

Experiment 2: System throughput
In general, the throughput is a typical

measure parameter. However, it is unfair to use
the typical throughput to evaluate the
performance in a multimedia system since
different types of files have different required
bandwidth. Thus, a new measure parameter
called weighted throughput is defined here. In
other words, a file requiring more bandwidth
will be more weighted in measuring the system
throughput. In the simulation, the weights of
four file types are 18~59 for MPEG2 files, 7 for
MPEG1 files, 1 for wave and non-real-time files,
respectively. In the experiment, we observe the
weighted throughput of three placement
strategies. As shown in Fig. 5, the random
placement is still the worst among all placement
strategies. Besides, our method has better or the
same performance than/as the PVW placement
in all cases.

0
5000

10000
15000
20000

1 2 3 4 5 6 7

Case

W
ei

gh
te

d
th

ro
ug

ho
ut

PVW

Random

Ours

Fig. 5 System throughput

Experiment 3: Dropping rate of real-time file
requests

In the experiment, we observe the
dropping rate of real-time file requests of three
placement strategies. As shown in Fig. 6, the
dropping rate of our method is the least among
all placement strategies in most cases. The
reason is that our method always places
real-time files onto the most appropriate
locations in the disk, thereby satisfying the
required bandwidth of different file types.

0
10
20
30
40
50
60

1 2 3 4 5 6 7

Case

D
ro

pp
in

g
ra

te
 (%

)

PVW

Random

Ours

Fig. 6 Dropping rate of real-time file requests

Experiment 4: Available disk spaces

From the results of Experiment 1 and
Experiment 2, it is not easy to judge which of
our method and the PVW placement is the
winner. Thus, in the experiment, we observe the
available disk spaces of each region after using
our method and the PVW placement. As shown
in Fig. 7(a), 7(b), and 7(c), we found that the
PVW placement tends to over-utilize
high-bandwidth regions when placing high QoS

 8

files such as MPEG2. This makes our method
more elastic than the PVW placement in the
future when placing high QoS files. Following
up Case 5, 6, and 7 as shown in Table 8 (i.e.,
decreasing the portion of high QoS files), we
found that our method is gradually leaving more
high-bandwidth regions, whereas the PVW
placement still over-utilizes high-bandwidth
regions.

0
20
40
60
80

100

1 2 3 4 5

Region ID

A
va

ila
bl

e
di

sk
 b

an
dw

id
th

(%
) PVW

Ours

Fig. 7(a) Available disk spaces for Case 5

0
20
40
60
80

100

1 2 3 4 5

Region IDA
va

ila
bl

e
di

sk
 b

an
dw

id
th

(%
) PVW

Ours

Fig. 7(b) Available disk spaces for Case 6

0
20
40
60
80

100

1 2 3 4 5

Region ID

A
va

ila
bl

e
di

sk
 b

an
dw

id
th

(%
) PVW

Ours

Fig. 7(c) Available disk spaces for Case 7

5 Conclusions

In this paper, we consider the

characteristics of zone disks, and partition the
disk array into several regions. Next, the
placement constraints for different requirements
such as file characteristics and popularity levels
are presented. Finally, according to the
placement constraints and current disk array
configuration, a file placement algorithm is
proposed to allocate appropriate disk locations
for files. Through the simulation, we found that
the dropping rate of real-time file requests in our
method is explicitly less than those in the other
two placement strategies. Furthermore, we also
observed the available disk spaces of each region
after using our method and the PVW placement,
and the results show that our method is more
elastic than the PVW placement in the future
when placing high QoS files such as MPEG2.

References

[1] Y. Birk, “Track-pairing: a novel data

layout for VOD servers with
multi-zone-recording disks,” Proc.
Second IEEE International Conference on
Multimedia Computing and Systems,
1995, pp. 248-255.

[2] R. Flynn and W. Tetzlaff, “Disk striping
and block replication algorithms for video
file servers,” Proc. Third IEEE
International Conference on Multimedia
Computing and Systems, 1996, pp.
590-597.

[3] Shahram Ghandeharizadeh and Seon Ho
Kim, “A comparison of alternative
continuous display techniques with
heterogeneous multi-zone disks,” Proc.
Eighth International Conference on
Information and Knowledge Management,
1999, pp. 442-449.

[4] Jeong-Won Kim, Hyoung-Roung Lim,
Young-Ju Kim, and Ki-Dong Chung, “A
data placement strategy on MZR for VOD
servers,” Proc. International Conference
on Parallel and Distributed Systems, 1997,
pp. 506-513.

[5] Jeong-Won Kim, Young-Uhg Lho, and
Ki-Dong Chung, “An effective video
block placement scheme on VOD server
based on multi-zone-recording disks,”
Proc. Fourth IEEE International
Conference on Multimedia Computing
and Systems, 1997, pp. 29-36.

[6] HweeHwa Pang, B. Jose, and M.S.
Krishnan, “Resource scheduling in a
high-performance multimedia server,”
IEEE Transactions on Knowledge and
Data Engineering, Vol. 11, No. 2, 1999,
pp. 303-320.

[7] Young-Sook Park, Jeong-Won Kim, and
Ki-Dong Chung, “A continuous media
placement using B-ZBSR on
heterogeneous MZR disk array,” Proc.
International Workshops on Parallel
Processing, 1999, pp. 482-487.

[8] C. Ruemmler and J. Wilkes, “An
introduction to disk drive modeling,”
Computer, Vol. 27, No. 3, 1994, pp.
17-28.

[9] Sheau-Ru Tong, Yee-Foon Huang, and
J.C.L. Liu, “Study on disk zoning for
video servers,” Proc. Fifth IEEE
International Conference on Multimedia
Computing and Systems, 1998, pp. 86-95.

[10] Jun Wang and Yiming Hu,
“PROFS-performance-oriented data
reorganization for log-structured file
system on multi-zone disks,” Proc. Ninth
International Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunication Systems, 2001, pp.
285-292.

