
Employing both inter-branch and intra-branch correlation
to improve the accuracy of branch prediction for

superscalar processors

Meng-chou Chang* Ting-yu Chiu Chih-pei Chang
Department of Electrical Engineering

Chang Gung University, Tao-Yuan, Taiwan
Email: mchang@mail.cgu.edu.tw*

Abstract

Today’s superscalar processors use branch
prediction to reduce the influence of control
hazards. Conventional two-level branch
predictors make predictions based on either
intra-branch correlation or inter-branch
correlation. In the paper, the authors proposed
two new branch predictors, called PGXg and
PGAg, which make predictions by employing
both intra-branch correlation and inter-branch
correction. It is shown that the proposed branch
predictors can achieve a better cost-performance
ratio than conventional two-level branch
predictors, such as PAg and gshare.

Keyword: superscalar processor, branch
prediction, speculative execution, two-level
branch predictor

1. Introduction

A superscalar processor has multiple
functional units, allowing more than one
instruction to be executed in parallel. However,
the performance of a superscalar processor can
not be improved unlimitedly by just providing
enough functional units because the data and
control dependences in a program add many
constraints on the execution order of instructions.
Most of today’s superscalar processors use
branch prediction and speculative execution to
alleviate the effects of conditional branches.
When a superscalar processor fetches a branch
instruction, it will predict the outcome of the
branch and continue to execute the following
instructions along the predicted path. The
speculative results of pending instructions will
be buffered in a dedicated hardware, such as the
reorder buffer [15]. When the outcome of the
predicted branch become resolved, the
speculative results will be committed if the
prediction is proven to be correct; otherwise, the
speculative results will be squashed and the
processor will restart instruction fetching and
execution from the misprediction point.

Branch predictions can be made in static or

dynamic way. Static prediction schemes
[5,9,12,14] predict the direction of a branch at
compile time, while dynamic prediction schemes
[1-4, 6-8, 10-11, 13-14, 16-18] predict the
direction of a branch at run time. In general,
dynamic prediction schemes are able to achieve
higher prediction accuracy than static prediction
schemes. Smith [14] proposed a dynamic branch
prediction scheme that uses a table of 2-bit
saturating up-down counters to predict the
directions of branches. Each branch instruction
is mapped via its address to a counter in the table.
Whenever the result of a branch is resolved, its
associated counter is updated according to the
outcome of the branch. The counter is
incremented by 1 if the outcome of the branch is
taken, and is decremented by 1 if non-taken.
When the processor fetches a branch, it predicts
the result of the branch according to the value of
the associated counter. If the most significant bit
of the value is 1, the branch is predicted as taken;
otherwise, the branch is predicted as non-taken.

index

PHT

00…000

00…001

00…010

11…110
11…111

2-bit counter
2-bit counter

2-bit counter

2-bit counter
2-bit counter

Global BHR

Figure 1. Structure of the branch predictor GAg.

Yeh and Patt [18] proposed the two-level

branch prediction scheme. A two-level branch
predictor is mainly composed of two
components, BHR (branch history register) and
PHT (pattern history table). BHR is used to
record the outcomes of the most recently
executed branches, and PHT is used to keep
track of the most likely direction of a branch
when a particular pattern is encountered in BHR.
Two types of two-level branch predictors, GAg

 - 1 -

and PAg, are shown in Figure 1 and Figure 2. As
shown in Figure 1, the branch predictor GAg has
only one BHR, the global BHR, which records
the outcomes of all branches. The content of the
global BHR represents the global branch history,
which is used as an index to access the
corresponding saturating counter in PHT. As
shown in Figure 2, the branch predictor PAg has
a table of local BHRs, and the previous
outcomes of a particular branch are recorded in
its corresponding local BHR. The content of the
local BHR represents the local branch history,
which is used as an index to access the
corresponding saturating counter in PHT.
McFarling [12] proposed the branch predictor
gshare, a variation of the global-history branch
predictor. As shown in Figure 3, the difference
between gshare and GAg is that in gshare the
global history is XORed with the branch address
to form the index to PHT. It has been shown that
gshare can achieve higher prediction accuracy
because the addressing scheme of gshare can
reduce the possibility of branch interferences in
PHT.

index

Table of
Local BHRs

Local BHR
Local BHR

Local BHR

Local BHR
Local BHR

Branch Address

PHT

2-bit counter
2-bit counter

2-bit counter

2-bit counter
2-bit counter

index

Figure 2. Structure of the branch predictor PAg.

index

Global BHR

PHT

00…000

00…001

00…010

11…110
11…111

2-bit counter
2-bit counter

2-bit counter

2-bit counter
2-bit counter

Branch Address

XOR

Figure 3. Structure of the branch predictor
gshare.

In the paper, we proposed two new branch
predictors, PGAg and PGXg, which can achieve
higher branch prediction accuracy than
conventional branch predictors, such as PAg and
gshare.

2. Importance of accurate branch
prediction

Branch instructions and their target labels

divide a program into basic blocks. A basic block
is composed of a straight-line code sequence
with no branches in except to the entry and no
branches out except at the exit. Let β denote
the average dynamic branch frequency, then the
average basic block size (i.e., the average
number of instructions in a basic block) can be
estimated as:

()

β

β
1

=

×
=

=

nsinstructiodynamictotalofnumberThe
nsinstructiodynamictotalofnumberThe
nsinstructiobranchdynamicofnumberThe

nsinstructiodynamictotalofnumberThe
sizeblockbasicAverage

For typical MIPS programs the average dynamic
branch frequency is often between 15% and 25%,
so the average block size is between 4 and 6.67.
If a superscalar processor does not support
branch prediction, it has to stall to wait for the
outcome of the next branch every 4 to 6.67
instructions before it can continue to execute the
following instructions in the next block. Since
the size of a basic block is very small, the
available instruction-level parallelism will be
little, leading to underutilization of processor
pipelines.

If a superscalar processor supports branch
prediction and speculative execution, it can
execute instructions across pending branches.
Therefore, the processor can find more
instructions to fill its pipelines, and a greater
amount of instruction-level parallelism can be
exploited. Letρdenote the accuracy of branch
prediction, the average code size between two
branch mispredictions, denoted by λ, can be
estimated as:

()

() ()

()ρβ

λ

−×
=

×
×

=

=

1
1

1
rateionmispredictfrequencybranch

nsinstructiodynamictotalofnumberThe
nsinstructiodynamictotalofnumberThe

branchesedmispredictofnumberThe
nsinstructiodynamictotalofnumberThe

ionsmispredictbranchtwobetweensizecodeAverage

Let branch frequency β = 20%, then
λ= 83 if ρ=94%
λ= 100 if ρ=95%
λ= 125 if ρ=96%
λ= 167 if ρ=97%
λ= 250 if ρ=98%

It is seen that the average code size between two

 - 2 -

branch mispredictionsλincreases rapidly with
the increase of branch prediction accuracyρ.
For example, λ has a improvement of 25%
whenρis improved from 95% to 96%. Thus, the
code segment in which a superscalar processor
can exploit instruction-level parallelism without
branch hazards is enlarged significantly even
with a small improvement on the branch
prediction accuracy. Moreover, the misprediction
penalty is proportional to the misprediction rate,
so improving the branch prediction accuracy can
effectively reduce the misprediction penalty.

Table of local
BHRs

1……001110

Global BHR

Concatenate

p
g

00.…..11010 1…...001110

.

11

Pattern
History Table

(PHT)

11
Predict Taken

10
Predict Taken

00
Predict Not-Taken

01
Predict Not-Taken

Not-Taken

Taken

Taken

Taken

Not-Taken

Not-Taken

Taken

Branch Instruction Address

000…………..11010

.

a

2-bit saturating counter

Not-Taken

Figure 4. Structure of the branch predictor
PGAg.

3. The branch predictors PGAg and

PGXg

Conventional two-level branch predictors
make predictions either based on inter-branch
correlation or based on intra-branch correlation.
However, the behavior of some branches in a
program can not be well predicted by just
employing one type of correlation.

The new branch predictors, PGAg and
PGXg, use both inter-branch and intra-branch
correlation to make predictions. Figure 4 shows
the structure of the branch predictor PGAg.
PGAg is composed of a global BHR, a table of
local BHRs and a PHT. The global BHR records
the global history of all branches, and the local
history of a particular branch is recorded in its
associated local BHR. The g-bit global branch
history and the p-bit local branch history are
concatenated to index the corresponding 2-bit

saturating counter in PHT. In the way, the
indexed counter records the branch tendency for
a particular combination of the global history
pattern and the local history pattern.

The structure of the branch predictor PGXg
is shown in Figure 5. The structure of PGXg is
very similar to that of PGAg. The only
difference is that the g-bit global branch history
is first XORed with the branch address before it
is concatenated with the p-bit local branch
history. The operation of XOR might reduce the
possibility of branch interferences in the pattern
history table.

000… … … … ..11010

.

Branch Instruction Address

G lobal BH R
1… … 001110

gTable of local
BH Rs

g

a

11
Predict Taken

10
Predict Taken

00
Predict Not-Taken

01
Predict Not-Taken

N ot-Taken

Taken

Taken

Taken

Not-Taken

N ot-Taken

Taken

Pattern
H istory Table

(PH T)

.

11

Concatenate

p

00.… ..11010 1… ...001110

2-bit saturating counter

Not-Take

Figure 5. Structure of the branch predictor
PGXg.

Both of the branch predictors PGAg and
PGXg employ the combination of global and
local branch history to access the PHT.
Therefore, they predict the outcome of a branch
based on both of the inter-branch and
intra-branch correlation.

4. Simulation results

In this section, we compare the

performance of four two-level branch predictors,
PAg, gshare, PGAg, and PGXg. PAg makes
predictions based on intra-branch correlation,
and gshare make predictions based on
inter-branch correlation. PGAg and PGXg make
predictions by utilizing both inter-branch and
intra-branch correlation.

 - 3 -

In the experiment, five benchmarks from
SPEC95int benchmark suit are used. The five
benchmarks include gcc, perl, m88ksim, vortex,
and li. The brief descriptions of the benchmarks
are given in Table 1. All benchmarks are
simulated until finish or for over 10000000
conditional branches. The statistics of simulation
are summarized in Table 2.

Table 1. Benchmarks used in the experiment
Benchmark Description

gcc Based on the GNU C compiler
version 2.5.3.

perl An interpreter for the Perl
language.

m88ksim A chip simulator for the Motorola
88100 microprocessor.

vortex An object oriented database.
li Xlisp interpreter.

Table 2. Statistics of simulation in the
experiment.
Benchmark Static

instruction
count

Dynamic
instruction
count

Dynamic
branch
instruction
count

gcc 8,474 63,885,066 10,461,104
perl 1,626 524,283,858 77,676,741

m88ksim 935 743,722,373 100,000,000
vortex 4,569 1,742,632,325 200,000,000

li 847 1,427,260,543 200,000,000

Table 3. The formulas of predictor size.
Predictor type Predictor size (bits)

PAg 22×+g g

gshare 22×+×el l

LGshare
PGAg
PGXg

22)(×++× +gel gl

Figure 6 shows the performance comparisons

of four branch predictors. The x-axis of the
figure is the predictor size, which represents the
hardware cost to implement the branch predictor.
The formulas of predictor size are given in Table
3, where g denotes the length of the global BHR,
l denotes the length of the local BHR, and e
denotes the number of local BHRs in the
predictor. From Figure 6, it is seen that PGXg
has the best performance over other predictors.

When the predictor size is fixed at about
4k-byte, the misprediction rates of PGXg, PGAg,
gshare, and PAg are 3.3%, 3.45%, 4.0%, and
4.4%, respectively. As the branch misprediction
penalty is proportional to branch misprediction
rate, about 25% of branch misprediction penalty
can be deleted when PGXg replaces the PAg
branch prediction scheme, and about 17.5% of

branch misprediction penalty can be deleted
when PGXg replaces the gshare branch
prediction scheme.

When the predictor size is fixed at about
16k-byte, the misprediction rates of PGXg,
PGAg, gshare, and PAg are 2.6%, 2.75%, 3.0%,
and 3.4%, respectively. About 23.5% of branch
misprediction penalty can be deleted when
PGXg replaces the PAg branch prediction
scheme, and about 13.3% of branch
misprediction penalty can be deleted when
PGXg replaces the gshare branch prediction
scheme.

5. Conclusion

As the pipeline depth and issue rate of
superscalar processors increase, the importance
of an excellent branch predictor becomes more
crucial to delivering the potential performance of
a wise-issue, deep pipelined processor. We have
proposed two branch predictors, PGAg and
PGXg, which employ both the intra-branch
correlation and the inter-branch correlation to
improve the branch prediction accuracy. These
two branch predictors can achieve better
performance over conventional branch predictors
such as PAg and gshare.

Acknowledgement

This work is supported by the National
Science Council, Taiwan, under Grant no.
NSC92-2220-E-182-005.

References

[1] M.-C. Chang and Y.-W. Chou, “Branch

prediction using both global and local history
information,” IEE Proceedings-Computers
and Digital Techniques, Vol. 149, No. 2,
March 2002, pp. 33-38.

[2] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y.N.
Patt, “Branch classification: a new
mechanism for improving branch predictor
performance,” in Proceedings of the 27th
Annual ACM/IEEE International Symposium
on Microarchitecture, 1994, pp. 22-31

[3] P.-Y. Chang, E. Hao, and Y.N. Patt,
“Alternative implementations of hybrid
branch predictors,” in Proceedings of the
28th ACM/IEEE Annual International
Symposium on Microarchitecture, 1995, pp.
252-257

[4] P.-Y. Chang, M. Evers, and Y.N. Patt,
“Improving branch prediction accuracy by
reducing pattern history table interference,”
in Proceedings of the 1996 International
Conference on Parallel Architecture and

 - 4 -

Compilation Techniques, 1996, pp. 48-57
[5] B.L. Deitrich, B.C. Chen, and W.W. Hwu,

“Improving static branch predictor in a
compiler,” in Proceedings of the 1998
International Conference on Parallel
Architectures and Compilation Techniques,
1998, pp. 214-221

[6] A.N. Eden and T. Mudge, “The YAGS
branch prediction scheme,” in Proceedings of
the 31st Annual IEEE/ACM International
Symposium Microarchitecture, 1998, pp.
69-77

[7] C. Egan, Dynamic Branch Prediction in
High Performance Superscalar Processors,
PhD Dissertation, Department of Computer
Science, Faculty of Engineering and
Information Sciences, University of
Hertfordshire, United Kingdom, August 2000

[8] M. Evers, S.J. Patel, R.S. Chappell, and Y.N.
Patt, “An analysis of correlation and
predictability: what makes two-Level branch
predictors work,” in Proceedings of the 25th
Annual International Symposium on
Computer Architecture, 1998, pp. 52-61

[9] J.A. Fisher and S.M. Freudenberfer,
“Predicting conditional branch directions
from previous runs of a program,” in
Proceedings of the 5th International
Conference on Architectural Support for
Programming Languages and Operating
Systems, October 1992, Boston, pp. 85-95

[10] C.-C. Lee, I.K. Chen, and T.N. Mudge, “The
bi-mode branch predictor,” in Proceedings of
the 30th Annual IEEE/ACM International
Symposium Microarchitecture, 1997, pp.
4-13

[11] S. Manne, A. Klauser, and D. Grunwald,
“Branch prediction using selective branch
inversion,” in Proceedings of the 1999
International Conference on Parallel
Architectures and Compilation Techniques,
1999, pp. 48-56

[12] S. McFarling and J. Hennessy, “Reducing
the cost of branches,” in Proceedings of the
13th Annual International Symposium on
Computer Architecture, 1986, pp. 396-403

[13] S. McFarling, Combining branch predictors,
Technical Report TN-36, Digital Western
Research Laboratory, June 1993.

[14] J.E. Smith, “A study of branch prediction
strategies,” in Proceedings of the 8th Annual
International Symposium on Computer
Architecture, 1981, pp. 135-148

[15] J.E. Smith and A.R. Pleszkun,
“Implementing precise interrupts in pipelined
processors,” IEEE Transactions on
Computers, Vol. 37, No. 5, 1988, pp.562-573

[16] E. Sprangle, R.S. Chappell, M. Alsup, and
Y.N. Patt, “The agree predictor: a mechanism
for reducing negative branch history
interference,” in Proceedings of the 24th
Annual International Symposium on
Computer Architecture, 1997, pp. 284-291

[17] L.N. Vintan and C. Egan, “Extending
correlation in branch prediction schemes,” in
Proceedings of the 25th EUROMICRO
Conference, 1999, pp. 441-448

[18] T.-Y. Yeh and Y.N. Patt, “Alternative
implementations of two-level adaptive
branch prediction,” in Proceedings of the.
19th Annual International Symposium on
Computer Architecture, 1992, pp. 124-134

PAg
gshare
PGAg
PGXg

Figure 6. Performance comparison of four branch predictors.

 - 5 -

