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Abstract 
 

Today’s superscalar processors use branch 
prediction to reduce the influence of control 
hazards. Conventional two-level branch 
predictors make predictions based on either 
intra-branch correlation or inter-branch 
correlation. In the paper, the authors proposed 
two new branch predictors, called PGXg and 
PGAg, which make predictions by employing 
both intra-branch correlation and inter-branch 
correction. It is shown that the proposed branch 
predictors can achieve a better cost-performance 
ratio than conventional two-level branch 
predictors, such as PAg and gshare.  
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1. Introduction 
 

A superscalar processor has multiple 
functional units, allowing more than one 
instruction to be executed in parallel. However, 
the performance of a superscalar processor can 
not be improved unlimitedly by just providing 
enough functional units because the data and 
control dependences in a program add many 
constraints on the execution order of instructions. 
Most of today’s superscalar processors use 
branch prediction and speculative execution to 
alleviate the effects of conditional branches. 
When a superscalar processor fetches a branch 
instruction, it will predict the outcome of the 
branch and continue to execute the following 
instructions along the predicted path. The 
speculative results of pending instructions will 
be buffered in a dedicated hardware, such as the 
reorder buffer [15]. When the outcome of the 
predicted branch become resolved, the 
speculative results will be committed if the 
prediction is proven to be correct; otherwise, the 
speculative results will be squashed and the 
processor will restart instruction fetching and 
execution from the misprediction point.  

Branch predictions can be made in static or 

dynamic way. Static prediction schemes 
[5,9,12,14] predict the direction of a branch at 
compile time, while dynamic prediction schemes 
[1-4, 6-8, 10-11, 13-14, 16-18] predict the 
direction of a branch at run time. In general, 
dynamic prediction schemes are able to achieve 
higher prediction accuracy than static prediction 
schemes. Smith [14] proposed a dynamic branch 
prediction scheme that uses a table of 2-bit 
saturating up-down counters to predict the 
directions of branches. Each branch instruction 
is mapped via its address to a counter in the table. 
Whenever the result of a branch is resolved, its 
associated counter is updated according to the 
outcome of the branch. The counter is 
incremented by 1 if the outcome of the branch is 
taken, and is decremented by 1 if non-taken. 
When the processor fetches a branch, it predicts 
the result of the branch according to the value of 
the associated counter. If the most significant bit 
of the value is 1, the branch is predicted as taken; 
otherwise, the branch is predicted as non-taken. 
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Figure 1. Structure of the branch predictor GAg. 

 
Yeh and Patt [18] proposed the two-level 

branch prediction scheme. A two-level branch 
predictor is mainly composed of two 
components, BHR (branch history register) and 
PHT (pattern history table). BHR is used to 
record the outcomes of the most recently 
executed branches, and PHT is used to keep 
track of the most likely direction of a branch 
when a particular pattern is encountered in BHR. 
Two types of two-level branch predictors, GAg 
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and PAg, are shown in Figure 1 and Figure 2. As 
shown in Figure 1, the branch predictor GAg has 
only one BHR, the global BHR, which records 
the outcomes of all branches. The content of the 
global BHR represents the global branch history, 
which is used as an index to access the 
corresponding saturating counter in PHT. As 
shown in Figure 2, the branch predictor PAg has 
a table of local BHRs, and the previous 
outcomes of a particular branch are recorded in 
its corresponding local BHR. The content of the 
local BHR represents the local branch history, 
which is used as an index to access the 
corresponding saturating counter in PHT. 
McFarling [12] proposed the branch predictor 
gshare, a variation of the global-history branch 
predictor. As shown in Figure 3, the difference 
between gshare and GAg is that in gshare the 
global history is XORed with the branch address 
to form the index to PHT. It has been shown that 
gshare can achieve higher prediction accuracy 
because the addressing scheme of gshare can 
reduce the possibility of branch interferences in 
PHT. 
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Figure 2. Structure of the branch predictor PAg. 
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gshare. 
 
 

In the paper, we proposed two new branch 
predictors, PGAg and PGXg, which can achieve 
higher branch prediction accuracy than 
conventional branch predictors, such as PAg and 
gshare.   

 

2. Importance of accurate branch 
prediction 

 
Branch instructions and their target labels 

divide a program into basic blocks. A basic block 
is composed of a straight-line code sequence 
with no branches in except to the entry and no 
branches out except at the exit. Let β denote 
the average dynamic branch frequency, then the 
average basic block size (i.e., the average 
number of instructions in a basic block) can be 
estimated as: 
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For typical MIPS programs the average dynamic 
branch frequency is often between 15% and 25%, 
so the average block size is between 4 and 6.67. 
If a superscalar processor does not support 
branch prediction, it has to stall to wait for the 
outcome of the next branch every 4 to 6.67 
instructions before it can continue to execute the 
following instructions in the next block. Since 
the size of a basic block is very small, the 
available instruction-level parallelism will be 
little, leading to underutilization of processor 
pipelines.  

If a superscalar processor supports branch 
prediction and speculative execution, it can 
execute instructions across pending branches. 
Therefore, the processor can find more 
instructions to fill its pipelines, and a greater 
amount of instruction-level parallelism can be 
exploited. Letρdenote the accuracy of branch 
prediction, the average code size between two 
branch mispredictions, denoted by λ, can be 
estimated as: 
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Let branch frequency β = 20%, then 
λ= 83             if ρ=94% 
λ= 100            if ρ=95% 
λ= 125            if ρ=96% 
λ= 167            if ρ=97% 
λ= 250            if ρ=98% 

It is seen that the average code size between two 
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branch mispredictionsλincreases rapidly with 
the increase of branch prediction accuracyρ. 
For example, λ has a improvement of 25% 
whenρis improved from 95% to 96%. Thus, the 
code segment in which a superscalar processor 
can exploit instruction-level parallelism without 
branch hazards is enlarged significantly even 
with a small improvement on the branch 
prediction accuracy. Moreover, the misprediction 
penalty is proportional to the misprediction rate, 
so improving the branch prediction accuracy can 
effectively reduce the misprediction penalty. 
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Figure 4. Structure of the branch predictor 
PGAg. 
 
 
3. The branch predictors PGAg and 

PGXg 
 

Conventional two-level branch predictors 
make predictions either based on inter-branch 
correlation or based on intra-branch correlation. 
However, the behavior of some branches in a 
program can not be well predicted by just 
employing one type of correlation.  

The new branch predictors, PGAg and 
PGXg, use both inter-branch and intra-branch 
correlation to make predictions. Figure 4 shows 
the structure of the branch predictor PGAg. 
PGAg is composed of a global BHR, a table of 
local BHRs and a PHT. The global BHR records 
the global history of all branches, and the local 
history of a particular branch is recorded in its 
associated local BHR. The g-bit global branch 
history and the p-bit local branch history are 
concatenated to index the corresponding 2-bit 

saturating counter in PHT. In the way, the 
indexed counter records the branch tendency for 
a particular combination of the global history 
pattern and the local history pattern.   

The structure of the branch predictor PGXg 
is shown in Figure 5. The structure of PGXg is 
very similar to that of PGAg. The only 
difference is that the g-bit global branch history 
is first XORed with the branch address before it 
is concatenated with the p-bit local branch 
history. The operation of XOR might reduce the 
possibility of branch interferences in the pattern 
history table. 
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Figure 5. Structure of the branch predictor 
PGXg. 
 

Both of the branch predictors PGAg and 
PGXg employ the combination of global and 
local branch history to access the PHT. 
Therefore, they predict the outcome of a branch 
based on both of the inter-branch and 
intra-branch correlation.  

 
4. Simulation results 

 
In this section, we compare the 

performance of four two-level branch predictors, 
PAg, gshare, PGAg, and PGXg. PAg makes 
predictions based on intra-branch correlation, 
and gshare make predictions based on 
inter-branch correlation. PGAg and PGXg make 
predictions by utilizing both inter-branch and 
intra-branch correlation. 
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In the experiment, five benchmarks from 
SPEC95int benchmark suit are used. The five 
benchmarks include gcc, perl, m88ksim, vortex, 
and li. The brief descriptions of the benchmarks 
are given in Table 1. All benchmarks are 
simulated until finish or for over 10000000 
conditional branches. The statistics of simulation 
are summarized in Table 2. 
     
Table 1. Benchmarks used in the experiment 
Benchmark Description 

gcc Based on the GNU C compiler 
version 2.5.3. 

perl An interpreter for the Perl 
language. 

m88ksim A chip simulator for the Motorola 
88100 microprocessor. 

vortex An object oriented database. 
li Xlisp interpreter. 

 
Table 2.  Statistics of simulation in the 
experiment. 
Benchmark Static 

instruction 
count 

Dynamic 
instruction 
count 

Dynamic 
branch 
instruction 
count 

gcc 8,474 63,885,066 10,461,104
perl 1,626 524,283,858 77,676,741

m88ksim 935 743,722,373 100,000,000
vortex 4,569 1,742,632,325 200,000,000

li 847 1,427,260,543 200,000,000
 

Table 3. The formulas of predictor size.  
Predictor type Predictor size (bits) 

PAg 22×+g g
 

gshare 22×+×el l  

LGshare 
PGAg 
PGXg 

22 )(×++× +gel gl
 

 
Figure 6 shows the performance comparisons 

of four branch predictors. The x-axis of the 
figure is the predictor size, which represents the 
hardware cost to implement the branch predictor. 
The formulas of predictor size are given in Table 
3, where g denotes the length of the global BHR, 
l denotes the length of the local BHR, and e 
denotes the number of local BHRs in the 
predictor. From Figure 6, it is seen that PGXg 
has the best performance over other predictors. 

When the predictor size is fixed at about 
4k-byte, the misprediction rates of PGXg, PGAg, 
gshare, and PAg are 3.3%, 3.45%, 4.0%, and 
4.4%, respectively. As the branch misprediction 
penalty is proportional to branch misprediction 
rate, about 25% of branch misprediction penalty 
can be deleted when PGXg replaces the PAg 
branch prediction scheme, and about 17.5% of 

branch misprediction penalty can be deleted 
when PGXg replaces the gshare branch 
prediction scheme. 

When the predictor size is fixed at about 
16k-byte, the misprediction rates of PGXg, 
PGAg, gshare, and PAg are 2.6%, 2.75%, 3.0%, 
and 3.4%, respectively. About 23.5% of branch 
misprediction penalty can be deleted when 
PGXg replaces the PAg branch prediction 
scheme, and about 13.3% of branch 
misprediction penalty can be deleted when 
PGXg replaces the gshare branch prediction 
scheme. 
 

5. Conclusion 
 

As the pipeline depth and issue rate of 
superscalar processors increase, the importance 
of an excellent branch predictor becomes more 
crucial to delivering the potential performance of 
a wise-issue, deep pipelined processor. We have 
proposed two branch predictors, PGAg and 
PGXg, which employ both the intra-branch 
correlation and the inter-branch correlation to 
improve the branch prediction accuracy. These 
two branch predictors can achieve better 
performance over conventional branch predictors 
such as PAg and gshare.  
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Figure 6. Performance comparison of four branch predictors. 
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