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Abstract

A vertex set D in graph G is called a geodetic

set if all vertices of G are lying on some shortest

u − v path of G, where u, v ∈ D. The geodetic

number of a graph G is the minimum cardinality

among all geodetic sets. A subset S of a geode-

tic set D is called a forcing subset of D if D is

the unique geodetic set containing S. The forcing

geodetic number of D is the minimum cardinal-

ity of a forcing subset of D, and the lower and

upper forcing geodetic numbers of a graph G are

the minimum and maximum forcing geodetic num-

bers, respectively, among all geodetic sets of G. In

this paper, we find out the lower and upper forcing

geodetic numbers of block-cactus graphs.
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1 Introduction

All graphs considered in this paper are fi-

nite and simple (i.e., without loops and multiple

edges). Let G = (V,E) be a graph with vertex

set V and edge set E. The cardinalities of V and

E are called order and size, respectively. The dis-

tance of two vertices u and v in a connected graph

G, denoted by d(u, v), is the number of edges in a

shortest u− v path. A shortest u− v path is also

called a u− v geodesic. Let I(u, v) denote the set

of all vertices lying on some u − v geodesic of G,

and I(S) =
⋃

u,v∈S I(u, v), where S ⊆ V (G).

A vertex set D in graph G is called a geodetic set

if I(D) = V (G). A geodetic set with the minimum

cardinality is said to be a minimum geodetic set (g-

set for short). The cardinality of a g-set, denoted

g(G), is called the geodetic number of a graph G

[12]. Notice that 2 ≤ g(G) ≤ |V | for |V | ≥ 2. In

[2], Buckley et al. characterized those connected

graphs for which the geodetic number is equal to

|V |, |V | − 1, or 2. Two classes of graphical games

called achievement and avoidance games were ex-

amined for the geodetic number[1, 10]. Lately,



Chartrand et al. boost the research on geodetic set

problems [4, 5, 6, 7, 8] and determine the geodetic

numbers for cycles, trees, etc. [8]. However, deter-

mining the geodetic number of a general graph is

NP-hard [9].

A subset S of a g-set D is called a forcing sub-

set of D if D is the unique g-set containing S.

This means that D can be figured out after S is

determined. A vertex in S is said to be a forc-

ing vertex of D. The forcing geodetic number of

D, denoted f(D), is the minimum cardinality of a

forcing subset for D [6]. The upper forcing geode-

tic number, denoted f+(G), of a graph G is the

maximum forcing geodetic number among all g-

sets of G [12]. Notice that f+(G) = 0 if and only

if G has exactly one g-set. In contrast, we define

the lower forcing geodetic number, denoted f−(G),

of a graph G to be the minimum forcing geodetic

number among all g-sets of G. We use Figure 1

as an example to illustrate the above notation. In

Figure 1, vertex set {a, b, c, d, e} is intuitively a

geodetic set of G. There are only three g-sets

in G, namely D1 = {a, b, e}, D2 = {a, c, d} and

D3 = {a, d, e}. Thus, g(G) = 3. Since D1 is the

only g-set containing b, it follows that f(D1) = 1.

Furthermore, D2 is the only g-set containing c.

Thus, f(D2) = 1. In D3, since every vertex of D3

is also contained in some other g-set, f(D3) ≥ 2.

It can be found that D3 is the unique g-set con-

taining {d, e}, and hence f(D3) = 2. There-

fore, f−(G) = min{f(D1), f(D2), f(D3)} = 1 and

f+(G) = max{f(D1), f(D2), f(D3)} = 2. More-

over, the forcing number of a disconnected graph

is defined to be the sum of the forcing numbers

of all components. For simplicity, all the graphs

considered in this paper are connected.

a

b c
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Figure 1: A graph G with g(G) = 3.

Researches on forcing concepts have been

widely studied such as forcing domination num-

ber [3], forcing perfect matching [11] and forc-

ing geodetic number [6]. Recently, Zhang de-

termined the upper forcing geodetic numbers for

trees, cycles, complete bipartite graphs and hyper-

cubes [12]. In this paper, we furthermore find out

the lower and upper forcing geodetic numbers of

block-cactus graphs which are the general case of

cycles and trees.

The remaining part of this paper is organized

as follows. The next section introduces some ba-

sic terminologies, notation and previous results.

In Section 3, we study the problem of finding

the lower and upper forcing geodetic numbers on

block-cactus graphs. Finally, we give concluding

remarks and address our future researches in the

last section.

2 Preliminaries and Previous Re-
sults

For any set S of vertices in a graph G, the sub-

graph induced by S, denoted by [S], is the maxi-

mal subgraph of G with vertex set S. The induced

subgraph [V \S] is denoted by G−S. It is the sub-

graph obtained from G by deleting the vertices in

S together with their incident edges. If S = {v},

then we write G−v for G−{v}. For a g-set D, the
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Figure 2: A block graph.

contribution of [S] to f(D) is the cardinality of a

subset of S which is also a forcing subset of D. A

vertex v is called an extreme vertex if the subgraph

induced by the neighbors of v is complete. A ver-

tex v is called a cut vertex if removing v and all

edges incident to it increases the number of com-

ponents. A block of a graph is a maximal subgraph

without a cut vertex. A graph G is called a block

graph if and only if every block of G is complete.

Clearly, every vertex of a block graph is either a

cut vertex or an extreme vertex. Figure 2 depicts

a block graph in which vertices 3, 4, 5, 8 and 10

are cut vertices while other vertices are extreme

vertices.

A block that is a cycle is called a cyclic block. A

cyclic block B is odd (respectively, even) if the or-

der of B is odd (respectively, even). A cyclic block

with a unique cut vertex is called a cyclic end-block

(CEB for short). We also call a block with more

than one cut vertex a cyclic internal-block (CIB

for short). A cactus graph is a graph in which ev-

ery block with three or more vertices is a cyclic

block. Furthermore, a graph whose blocks are

either cycles or complete is called a block-cactus

graph. Block-cactus graphs generalize the known

classes of block graphs and cactus graphs [13]. For

example, Figure 3 illustrates a cactus graph G

with blocks {B1, B2, B3, B4, B5, B6, B7, B8} and
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Figure 3: A cactus graph G.
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Figure 4: A block-cactus graph.

cut vertices are 2, 3, 7, 11, 19 and 20. Blocks B1, B2

and B4 are CIBs, while B3 is a CEB. The orders

of B1, B2, B3 and B4 are 7, 6, 3 and 5, respec-

tively. Blocks B1, B3 and B4 are odd and B2 is

even. Figure 4 is a block-cactus graph. We can

see that B2 and B4 in Figure 3 are changed to

complete graphs in Figure 4.

Consider CIBs of G and let B be a CIB of G.

A path P in B is called a segment if both of its

end vertices are cut vertices and the other vertices

in P are not cut vertices. Clearly, |P | < n. A seg-

ment P is said to be a long segment if the length

of P is greater than n
2 . Intuitively, B has at most

one long segment while other segments are called

short segments. A CIB having a long segment is

also called an LCIB except that the size of the CIB

is odd and the length of the long segment is one

less than the size of the CIB. We use l(G) to de-



note the number of LCIBs in G. Take Figure 3 as

an example. Block B1 has three segments in which

path: 3, 4, 5, 6, 7 is a long segment while other seg-

ments are short. So, B1 is an LCIB. Moreover, B4

is another LCIB while B2 is not. In B4, segment

S1 : 19, 20 and S2 : 20, 16, 17, 18, 19 are with the

same end vertices. Nevertheless, S1 is short and

S2 is long. Furthermore, since the length of S2 is

equal to the order of B4 minus 1 and S2 is in an

odd CIB, S2 is not an LCIB. Therefore, l(G) = 1.

The following lemmas shown by Zhang [12] are

helpful to clarify our proof for determining the

lower forcing geodetic numbers of other graphs.

Lemma 1 For a graph G, f+(G) = 0 if and only

if G has exactly one g-set.

For an integer k ≥ 2, Zhang [12] showed that

g(C2k) = 2 and g(C2k+1) = 3, where Cn is a cycle

of n vertices. The next lemma describes the upper

forcing geodetic numbers for Cn.

Lemma 2 f+(Cn) =


0 if n = 3,
1 if n is even,
2 if n = 5,
3 if n ≥ 7 is odd.

The next two lemmas state the inclusion and

exclusion of extreme vertices and cut vertices, re-

spectively, with respect to geodetic sets.

Lemma 3 Every extreme vertex belongs to every

geodetic set.

Lemma 4 If w is a cut vertex, then w cannot be

a vertex of any g-set.

By Lemma 3, every extreme vertex is certainly

contained in every g-set. Therefore, the next

corollary follows.

Corollary 5 Every extreme vertex cannot be a

forcing vertex.

For a complete graph or a tree G, G has ex-

actly one g-set which consists of all extreme ver-

tices. Thus, by Corollary 5, we have the following

corollary.

Corollary 6 If G is a complete graph or a tree,

then f−(G) = 0.

3 The Forcing Geodetic Numbers of
Block-cactus Graphs

For the lower forcing geodetic number f−(G) of

a graph G, if f−(G) = 0, then G has exactly one

g-set. Thus, the next lemma follows directly from

Lemma 1.

Lemma 7 The following statements are equiva-

lent:

(1) f+(G) = 0,

(2) G has exactly one g-set,

(3) f−(G) = 0.

For a block graph G, the geodetic number of

G can be obtained directly from Lemmas 3 and 4.

Furthermore, the lower and upper forcing geodetic

numbers of G follow from Lemma 4 and Corollary

5.

Theorem 8 Let c be the number of cut vertices

of a block graph G. Then, g(G) = |V | − c and

f−(G) = f+(G) = 0.

To determine the forcing geodetic numbers on

cactus graphs, we need to find out the forcing

geodetic numbers of cycles. In contrast with

Lemma 2, we show the lower forcing geodetic num-

ber of a cycle as follows.

Lemma 9 f−(Cn) = 0 if n = 3,
1 if n is even,
2 if n is odd and n 6= 3.



Proof. If n = 3, then every vertex is obviously

an extreme vertex. By Lemma 3, f−(C3) = 0. For

an even cycle Cn : v0, v1, . . . , v2k−1, v0, every g-set

is of the form {vi, v(i+k) mod 2k} which is the only

g-set containing vi, where 0 ≤ i ≤ 2k − 1. Thus,

f−(Cn) = 1 for n is even.

At first, we show that f−(Cn) ≥ 2 for the case

where n is odd and n 6= 3. It is clear that there

are more than one g-set in Cn. By Lemma 7,

f−(Cn) > 0. We now show that f−(Cn) 6= 1.

Suppose to the contrary that there exists a g-set

such that f−(Cn) = 1. With vertex symmet-

ric property of cycles, let D = {v0, vi, vj}, 0 ≤

i, j ≤ 2k − 1, be the unique g-set containing v0.

This implies that v0 cannot be contained in any

other g-set. Nevertheless, both {v0, v1, vk+1} and

{v0, vk, vk+1} are also g-sets. It is a contradiction.

Finally, we present a g-set D′ with f(D′) = 2

to complete the proof. Let D′ = {v0, v1, vk+1}

be a g-set of Cn : v0, v1, . . . , v2k, v0. Clearly, D

is the unique g-set containing {v0, v1} and hence

f(D) = 2. We conclude that f−(Cn) = 2 if n is

odd and n 6= 3.

Q. E. D.

Consider a CEB B of cactus graph G and let

w be the cut vertex of B. If the order of B is 3,

then all the vertices in V (B) \ {w} are clearly ex-

treme vertices, and hence are not forcing vertices.

Therefore, We only need to consider the CEBs of

order ≥ 4.

Lemma 10 If B is a CEB of cactus graph G with

order ≥ 4, then B contributes f−(B)−1 to f−(G)

and f+(B)− 1 to f+(G).

Proof. Let v be the cut vertex of B and D be a

g-set of G. It can be seen that G−B has at least

one vertex, say u, in D. Let Dv = D∩V (B)∪{v}.

Then, Dv is clearly a g-set of B. If the order

of B is even, then, by Lemmas 2 and 9, B has

exactly one forcing vertex in Dv. We can adjust

this forcing vertex to be vertex v and this lemma

follows. Now, we consider that the order of B is

odd. Let S denote a forcing subset of Dv. Since

the order of B is greater than 3, by Lemmas 2

and 9, |S| ≥ 2. Without loss of generality, we

can adjust S so that v is a vertex in S. Note that

the vertices in S \ {v} are still forcing vertices of

D. This implies that B contributes f−(B) − 1 to

f−(G) and f+(B)− 1 to f+(G).

Q. E. D.

The following notation will be used in Lem-

mas 11 and 12. Let P be a segment in CIB B

of cactus graph G and the end vertices of P be

a and b. Since a (respectively, b) is a cut ver-

tex, G − a (respectively, G − b) has at least two

components. Let Ga (respectively, Gb) denote the

subgraph which consists of all the components of

G− a (respectively, G− b) except the component

containing P . It can be seen that G consists of

Ga, Gb and B.

Lemma 11 If w is a vertex of a short segment,

then w cannot be a vertex of any g-set.

Proof. Let P be a short segment in cycle B of

cactus graph G, the end vertices of P be a and b

and w be a vertex in P . It is clear that both Ga

and Gb have at least one vertex in a g-set D of

G. Let a′ ∈ Ga and b′ ∈ Gb be two vertices of D.

Suppose to the contrary that w is in some g-set

D. By definition, there is a vertex u 6∈ D such

that u ∈ I(w,w′) and u 6∈ I(D \ {w}) where w′ ∈

D. Since P is short, V (P ) ⊆ I(a′, b′) and hence



u 6∈ V (P ). There are three cases to be considered

depending on the position of u.

Case 1: u ∈ Ga.

Since u ∈ I(w,w′), w′ must be in Ga. Therefore,

u lies on a a − w′ geodesic P ′. However, P ′ is

indeed a subpath of a b′ − w′ geodesic. Thus, u

also lies on a b′ − w′ geodesic. This contradicts

that u 6∈ I(D \ {w}).

Case 2: u ∈ Gb.

This proof is similar to Case 1.

Case 3: u ∈ B − P .

Since u ∈ I(w,w′), w′ must be in B − P . Let P ′

be a w − w′ geodesic where u ∈ V (P ′). Clearly,

a−w or b−w geodesic is a subpath of P ′. If a−w

geodesic is a subpath of P ′, then u ∈ I(a′, w′), a

contradiction. Otherwise, b− w geodesic must be

a subpath of P ′. Therefore, u ∈ I(b′, w′). It is

also a contradiction.

We conclude that w cannot be a vertex of any

g-set.

Q. E. D.

Lemma 12 Let B be a CIB with order n of cactus

graph G and P be a long segment of B. Then, P

has exactly one vertex in every g-set of G if and

only if |P | = n− 1 and n is odd.

Proof. Let a′ ∈ Ga and b′ ∈ Gb be

two vertices of a g-set D of G. Since segment

P : a = v1, v2, . . . , v|P | = b is long, V (P ) 6⊆

I(a′, b′). Thus, there is at least one vertex in

V (P )∩D such that V (P ) ⊆ I(D). Moreover, since

V (P ) ⊆ I(a′, vb |P |
2 c)∪I(b′, vb |P |

2 c), |V (P )∩D| = 1.

Let vx be the vertex in V (P ) ∩ D. Then, x

and |P | − x are length of path:v1, v2, . . . , vx and

path:vx, vx+1, vx+2, . . . , vn−1, respectively. Note

that both x and |P |−x must be less than or equal

to bn
2 c. At first, we prove that if |P | = n−1 and n

is odd, then vx belongs to every g-set of G. Since

n is odd, bn
2 c = n−1

2 . Then,

x ≤ n− 1
2

(1)

and

|P | − x ≤ n− 1
2

. (2)

According to Equations 1 and 2, we have x = n−1
2 .

Thus, vx is the exactly one vertex that belongs to

every g-set.

Now, we prove that if P has exactly one vertex

vx in every g-set of G, then |P | = n − 1 and n is

odd. Since, by vertex symmetry property of cycle

B, vn−1
2

is the only possible vertex of B in D, n−1

is a multiple of 2. Therefore, n is odd. Suppose

to the contrary that |P | ≤ n − 2. Since |P |
2 + 1 is

less than n
2 , D \ {v |P |

2
} ∪ {v |P |

2 +1
} is also a g-set

of G. This contradicts the fact that v |P |
2

is the

exactly one vertex in V (P )∩D. We conclude that

|P | = n− 1 and n is odd.

Q. E. D.

Consider a cactus graph G, if G is a cycle, then

the forcing numbers of G are determined by Lem-

mas 2 and 9. For convenience, we use α and β

to denote the cardinalities of the CEBs of order 5

and order ≥ 7, respectively.

Theorem 13 If G is a cactus graph and not a

cycle, then f−(G) = α + β + l(G) and f+(G) =

α + 2 · β + l(G).

Proof. If v ∈ V (G) does not belong to a CEB or

a CIB of G, then v is clearly either an end vertex

or a cut vertex. By Lemma 4 and Corollary 5, v

cannot be a forcing vertex. Moreover, every even

CEB contains no forcing vertex due to Lemmas 2,



9 and 10. Therefore, we next consider odd CEBs

of order ≥ 5. By Lemmas 9 and 10, each odd CEB

of order ≥ 5 contributes 1 to f−(G), while other

CEBs have no contribution. Therefore, all CEBs

totally contribute α + β to f−(G). Similarly, by

Lemmas 2 and 10, each odd CEB of order 5 con-

tributes 1 to f+(G) and each odd CEB of order

≥ 7 contributes 2 to f+(G). Thus, all CEBs to-

tally contribute α + 2 · β to f+(G).

Now we are at a position to consider the con-

tribution of CIBs. Let P be a segment in CIB B

of cactus graph G and the end vertices of P be a

and b. Let D be a g-set of G. If P is short or

|P | = n−1 and n is odd, then, by Lemmas 11 and

12, P has no contribution to f(D). We then check

LCIBs. By definition and Lemma 12, every LCIB

contains exactly one vertex w in D, and w does

not belong to all g-sets of G. That is, each LCIB

contributes 1 to f(D). Thus, all CIBs totally con-

tribute l(G) to f(D).

Q. E. D.

For a block-cactus graph G, if v ∈ V (G) does

not belong to a cyclic block, then v must be an

extreme vertex or a cut vertex. By Lemma 4 and

Corollary 5, v cannot be a forcing vertex. Thus, we

immediately sum up the contribution of all cyclic

blocks for finding f−(G) and f+(G). Since the

proof is similar to the proof of Theorem 13, we

conclude the result as follows.

Theorem 14 If G is a block-cactus graph and not

a cycle, then f−(G) = α + β + l(G) and f+(G) =

α + 2 · β + l(G).

4 Concluding Remarks

Zhang determined the upper forcing geode-

tic numbers for trees, cycles, complete bipartite

graphs and hypercubes [12]. In contrast, we fur-

ther propose another graph parameter, namely

lower forcing geodetic number, and explore the

lower and upper forcing geodetic numbers of

block-cactus graphs. An obvious continuation of

this work is to investigate the forcing geodetic

numbers on other larger classes of graphs. An-

other line of progression will be to develop efficient

algorithms for finding the set of forcing geodetic

vertices.
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